Suppr超能文献

利用数字生物标志物对重度抑郁症患者进行个体化复发预测。

Personalized relapse prediction in patients with major depressive disorder using digital biomarkers.

机构信息

Janssen Research & Development, LLC, 1125 Trenton Harbourton Road, Titusville, NJ, 08560, USA.

Department of Bioengineering, University of Illinois Chicago, Chicago, IL, USA.

出版信息

Sci Rep. 2023 Oct 30;13(1):18596. doi: 10.1038/s41598-023-44592-8.

Abstract

Major depressive disorder (MDD) is a chronic illness wherein relapses contribute to significant patient morbidity and mortality. Near-term prediction of relapses in MDD patients has the potential to improve outcomes by helping implement a 'predict and preempt' paradigm in clinical care. In this study, we developed a novel personalized (N-of-1) encoder-decoder anomaly detection-based framework of combining anomalies in multivariate actigraphy features (passive) as triggers to utilize an active concurrent self-reported symptomatology questionnaire (core symptoms of depression and anxiety) to predict near-term relapse in MDD. The framework was evaluated on two independent longitudinal observational trials, characterized by regular bimonthly (every other month) in-person clinical assessments, weekly self-reported symptom assessments, and continuous activity monitoring data with two different wearable sensors for ≥ 1 year or until the first relapse episode. This combined passive-active relapse prediction framework achieved a balanced accuracy of ≥ 71%, false alarm rate of ≤ 2.3 alarm/patient/year with a median relapse detection time of 2-3 weeks in advance of clinical onset in both studies. The study results suggest that the proposed personalized N-of-1 prediction framework is generalizable and can help predict a majority of MDD relapses in an actionable time frame with relatively low patient and provider burden.

摘要

重度抑郁症(MDD)是一种慢性疾病,其复发会导致患者发病率和死亡率显著增加。对 MDD 患者复发的近期预测有可能通过帮助实施临床护理中的“预测和预防”范式来改善预后。在这项研究中,我们开发了一种新的基于个性化(N-of-1)编码器-解码器异常检测的框架,该框架结合了多变量活动特征中的异常(被动)作为触发因素,利用主动同时进行的自我报告症状问卷(抑郁和焦虑的核心症状)来预测 MDD 的近期复发。该框架在两个独立的纵向观察性试验中进行了评估,这些试验的特点是定期进行每两个月(每隔一个月)的面对面临床评估、每周进行自我报告症状评估以及连续活动监测数据,使用两种不同的可穿戴传感器进行了至少 1 年或直到首次复发的监测。这种结合被动和主动的复发预测框架在两项研究中均实现了≥71%的平衡准确性、≤2.3 次警报/患者/年的误报率,并且在临床发作前提前 2-3 周检测到中位数复发。研究结果表明,所提出的个性化 N-of-1 预测框架具有普遍性,可以帮助在可操作的时间范围内预测大多数 MDD 复发,并且患者和提供者的负担相对较低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/917d/10616277/f817014c22e0/41598_2023_44592_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验