Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
Acta Pharmacol Sin. 2024 Mar;45(3):558-569. doi: 10.1038/s41401-023-01174-8. Epub 2023 Oct 30.
Endothelial dysfunction is a common complication of diabetes mellitus (DM) and contributes to the high incidence and mortality of cardiovascular and cerebrovascular diseases. Aberrant epigenetic regulation under diabetic conditions, including histone modifications, DNA methylation, and non-coding RNAs (ncRNAs) play key roles in the initiation and progression of diabetic vascular complications. ASH2L, a H3K4me3 regulator, triggers genetic transcription, which is critical for physiological and pathogenic processes. In this study we investigated the role of ASH2L in mediating diabetic endothelial dysfunction. We showed that ASH2L expression was significantly elevated in vascular tissues from diabetic db/db mice and in rat aortic endothelial cells (RAECs) treated with high glucose medium (11 and 22 mM). Knockdown of ASH2L in RAECs markedly inhibited the deteriorating effects of high glucose, characterized by reduced oxidative stress and inflammatory responses. Deletion of endothelial ASH2L in db/db mice by injection of an adeno-associated virus (AAV)-endothelial specific system carrying shRNA against Ash2l (AAV-shAsh2l) restored the impaired endothelium-dependent relaxations, and ameliorated DM-induced vascular dysfunction. We revealed that ASH2L expression activated reductase STEAP4 transcription in vitro and in vivo, which consequently elevated Cu(I) transportation into ECs by the copper transporter CTR1. Excess copper produced by STEAP4-mediated copper uptake triggered oxidative stress and inflammatory responses, resulting in endothelial dysfunction. Our results demonstrate that hyperglycemia triggered ASH2L-STEAP4 axis contributes to diabetic endothelial dysfunction by modulating copper uptake into ECs and highlight the therapeutic potential of blocking the endothelial ASH2L in the pathogenesis of diabetic vascular complications.
内皮功能障碍是糖尿病(DM)的常见并发症,导致心血管和脑血管疾病的发病率和死亡率居高不下。糖尿病条件下异常的表观遗传调控,包括组蛋白修饰、DNA 甲基化和非编码 RNA(ncRNA),在糖尿病血管并发症的发生和发展中起关键作用。ASH2L 是一种 H3K4me3 调节剂,触发基因转录,这对于生理和病理过程至关重要。在本研究中,我们研究了 ASH2L 在介导糖尿病内皮功能障碍中的作用。我们表明,ASH2L 在糖尿病 db/db 小鼠的血管组织和高糖培养基(11 和 22mM)处理的大鼠主动脉内皮细胞(RAECs)中表达显著升高。在 RAECs 中敲低 ASH2L 可显著抑制高糖引起的恶化作用,表现为氧化应激和炎症反应减少。通过注射携带针对 Ash2l 的短发夹 RNA(shRNA)的腺相关病毒(AAV)内皮特异性系统,在 db/db 小鼠中删除内皮 ASH2L(AAV-shAsh2l)可恢复受损的内皮依赖性松弛,并改善 DM 引起的血管功能障碍。我们揭示了 ASH2L 表达在体外和体内激活还原酶 STEAP4 转录,从而通过铜转运蛋白 CTR1 将 Cu(I)转运到 ECs 中。STEAP4 介导的铜摄取产生的过量铜触发氧化应激和炎症反应,导致内皮功能障碍。我们的研究结果表明,高血糖触发的 ASH2L-STEAP4 轴通过调节 ECs 中的铜摄取导致糖尿病内皮功能障碍,并强调了阻断内皮 ASH2L 在糖尿病血管并发症发病机制中的治疗潜力。