Suppr超能文献

一种用于糖尿病视网膜病变严重程度分类的多领域生物启发式特征提取和选择模型:集成学习方法。

A multidomain bio-inspired feature extraction and selection model for diabetic retinopathy severity classification: an ensemble learning approach.

机构信息

School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, 632014, India.

出版信息

Sci Rep. 2023 Oct 30;13(1):18572. doi: 10.1038/s41598-023-45886-7.

Abstract

Diabetes retinopathy (DR) is one of the leading causes of blindness globally. Early detection of this condition is essential for preventing patients' loss of eyesight caused by diabetes mellitus being untreated for an extended period. This paper proposes the design of an augmented bioinspired multidomain feature extraction and selection model for diabetic retinopathy severity estimation using an ensemble learning process. The proposed approach initiates by identifying DR severity levels from retinal images that segment the optical disc, macula, blood vessels, exudates, and hemorrhages using an adaptive thresholding process. Once the images are segmented, multidomain features are extracted from the retinal images, including frequency, entropy, cosine, gabor, and wavelet components. These data were fed into a novel Modified Moth Flame Optimization-based feature selection method that assisted in optimal feature selection. Finally, an ensemble model using various ML (machine learning) algorithms, which included Naive Bayes, K-Nearest Neighbours, Support Vector Machine, Multilayer Perceptron, Random Forests, and Logistic Regression were used to identify the various severity complications of DR. The experiments on different openly accessible data sources have shown that the proposed method outperformed conventional methods and achieved an Accuracy of 96.5% in identifying DR severity levels.

摘要

糖尿病性视网膜病变 (DR) 是全球致盲的主要原因之一。早期发现这种疾病对于预防因糖尿病未经长时间治疗而导致的视力丧失至关重要。本文提出了一种基于集成学习过程的增强型仿生多领域特征提取和选择模型,用于糖尿病性视网膜病变严重程度估计。该方法首先使用自适应阈值处理从视网膜图像中识别 DR 严重程度级别,这些图像对视盘、黄斑、血管、渗出物和出血进行分割。一旦图像被分割,就从视网膜图像中提取多领域特征,包括频率、熵、余弦、Gabor 和小波分量。这些数据被输入到一种新颖的基于改进 moth 火焰优化的特征选择方法中,该方法有助于进行最佳特征选择。最后,使用各种机器学习 (ML) 算法的集成模型,包括朴素贝叶斯、K-最近邻、支持向量机、多层感知机、随机森林和逻辑回归,来识别 DR 的各种严重并发症。在不同公开可用的数据源上进行的实验表明,所提出的方法优于传统方法,在识别 DR 严重程度级别方面达到了 96.5%的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2798/10616283/d7ea99acf142/41598_2023_45886_Fig1_HTML.jpg

相似文献

2
A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy.
J Med Syst. 2017 Nov 9;41(12):201. doi: 10.1007/s10916-017-0853-x.
3
4
An adaptive weighted ensemble learning network for diabetic retinopathy classification.
J Xray Sci Technol. 2024;32(2):285-301. doi: 10.3233/XST-230252.
6
Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning.
Comput Biol Med. 2021 Oct;137:104795. doi: 10.1016/j.compbiomed.2021.104795. Epub 2021 Aug 25.
8
Automated classification of diabetic retinopathy through reliable feature selection.
Phys Eng Sci Med. 2020 Sep;43(3):927-945. doi: 10.1007/s13246-020-00890-3. Epub 2020 Jul 9.
9
A novel four-step feature selection technique for diabetic retinopathy grading.
Phys Eng Sci Med. 2021 Dec;44(4):1351-1366. doi: 10.1007/s13246-021-01073-4. Epub 2021 Nov 8.
10
Optical imaging for diabetic retinopathy diagnosis and detection using ensemble models.
Photodiagnosis Photodyn Ther. 2024 Aug;48:104259. doi: 10.1016/j.pdpdt.2024.104259. Epub 2024 Jun 27.

引用本文的文献

2
A Robust Machine Learning Model for Diabetic Retinopathy Classification.
J Imaging. 2023 Dec 28;10(1):8. doi: 10.3390/jimaging10010008.

本文引用的文献

1
Global trends and performances in diabetic retinopathy studies: A bibliometric analysis.
Front Public Health. 2023 Apr 13;11:1128008. doi: 10.3389/fpubh.2023.1128008. eCollection 2023.
3
Prevalence of venous loops and association with retinal ischemia in diabetic retinopathy using widefield swept-source OCT angiography.
Graefes Arch Clin Exp Ophthalmol. 2023 Jul;261(7):1861-1870. doi: 10.1007/s00417-022-05957-3. Epub 2023 Jan 30.
5
EDR-Net: Lightweight Deep Neural Network Architecture for Detecting Referable Diabetic Retinopathy.
IEEE Trans Biomed Circuits Syst. 2022 Jun;16(3):467-478. doi: 10.1109/TBCAS.2022.3182907. Epub 2022 Jul 12.
7
Diabetic Retinopathy Grading by Deep Graph Correlation Network on Retinal Images Without Manual Annotations.
Front Med (Lausanne). 2022 Apr 14;9:872214. doi: 10.3389/fmed.2022.872214. eCollection 2022.
8
RTNet: Relation Transformer Network for Diabetic Retinopathy Multi-Lesion Segmentation.
IEEE Trans Med Imaging. 2022 Jun;41(6):1596-1607. doi: 10.1109/TMI.2022.3143833. Epub 2022 Jun 1.
9
IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.
Diabetes Res Clin Pract. 2022 Jan;183:109119. doi: 10.1016/j.diabres.2021.109119. Epub 2021 Dec 6.
10
Joint Learning of Multi-Level Tasks for Diabetic Retinopathy Grading on Low-Resolution Fundus Images.
IEEE J Biomed Health Inform. 2022 May;26(5):2216-2227. doi: 10.1109/JBHI.2021.3119519. Epub 2022 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验