Aujih Ahmad Bukhari, Shapiai Mohd Ibrahim, Meriaudeau Fabrice, Tang Tong Boon
IEEE Trans Biomed Circuits Syst. 2022 Jun;16(3):467-478. doi: 10.1109/TBCAS.2022.3182907. Epub 2022 Jul 12.
Present architecture of convolution neural network for diabetic retinopathy (DR-Net) is based on normal convolution (NC). It incurs high computational cost as NC uses a multiplicative weight that measures a combined correlation in both cross-channel and spatial dimension of layer's inputs. This might cause the overall DR-Net architecture to be over-parameterised and computationally inefficient. This paper proposes EDR-Net - a new end-to-end, DR-Net architecture with depth-wise separable convolution module. The EDR-Net architecture was trained with DRKaggle-train dataset (35,126 images), and tested on two datasets, i.e. DRKaggle-test (53,576 images) and Messidor-2 (1,748 images). Results showed that the proposed EDR-Net achieved predictive performance comparable with current state-of-the-arts in detecting referable diabetic retinopathy (rDR) from fundus images and outperformed other light weight architectures, with at least two times less computation cost. This makes it more amenable for mobile device based computer-assisted rDR screening applications.
目前用于糖尿病视网膜病变的卷积神经网络(DR-Net)架构基于普通卷积(NC)。由于NC使用乘法权重来衡量层输入在跨通道和空间维度上的综合相关性,因此计算成本很高。这可能会导致整个DR-Net架构参数过多且计算效率低下。本文提出了EDR-Net——一种具有深度可分离卷积模块的新型端到端DR-Net架构。EDR-Net架构使用DRKaggle训练数据集(35126张图像)进行训练,并在两个数据集上进行测试,即DRKaggle测试集(53576张图像)和Messidor-2(1748张图像)。结果表明,所提出的EDR-Net在从眼底图像中检测可参考糖尿病视网膜病变(rDR)方面实现了与当前最先进技术相当的预测性能,并且优于其他轻量级架构,计算成本至少降低了两倍。这使得它更适合基于移动设备的计算机辅助rDR筛查应用。