Department of Radiology.
Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam.
J Thorac Imaging. 2024 May 1;39(3):165-172. doi: 10.1097/RTI.0000000000000759. Epub 2023 Nov 1.
Pleural plaques (PPs) are morphologic manifestations of long-term asbestos exposure. The relationship between PP and lung function is not well understood, whereas the time-consuming nature of PP delineation to obtain volume impedes research. To automate the laborious task of delineation, we aimed to develop automatic artificial intelligence (AI)-driven segmentation of PP. Moreover, we aimed to explore the relationship between pleural plaque volume (PPV) and pulmonary function tests.
Radiologists manually delineated PPs retrospectively in computed tomography (CT) images of patients with occupational exposure to asbestos (May 2014 to November 2019). We trained an AI model with a no-new-UNet architecture. The Dice Similarity Coefficient quantified the overlap between AI and radiologists. The Spearman correlation coefficient ( r ) was used for the correlation between PPV and pulmonary function test metrics. When recorded, these were vital capacity (VC), forced vital capacity (FVC), and diffusing capacity for carbon monoxide (DLCO).
We trained the AI system on 422 CT scans in 5 folds, each time with a different fold (n = 84 to 85) as a test set. On these independent test sets combined, the correlation between the predicted volumes and the ground truth was r = 0.90, and the median overlap was 0.71 Dice Similarity Coefficient. We found weak to moderate correlations with PPV for VC (n = 80, r = -0.40) and FVC (n = 82, r = -0.38), but no correlation for DLCO (n = 84, r = -0.09). When the cohort was split on the median PPV, we observed statistically significantly lower VC ( P = 0.001) and FVC ( P = 0.04) values for the higher PPV patients, but not for DLCO ( P = 0.19).
We successfully developed an AI algorithm to automatically segment PP in CT images to enable fast volume extraction. Moreover, we have observed that PPV is associated with loss in VC and FVC.
胸膜斑(PPs)是长期石棉暴露的形态学表现。PP 与肺功能之间的关系尚不清楚,而对获得体积的 PP 进行描绘是一项耗时的工作,这阻碍了研究的开展。为了实现对描绘工作的自动化,我们旨在开发一种自动人工智能(AI)驱动的 PP 分割方法。此外,我们还旨在探索胸膜斑体积(PPV)与肺功能测试之间的关系。
放射科医生在 2014 年 5 月至 2019 年 11 月期间对有职业性石棉暴露的患者的 CT 图像进行了回顾性手动描绘。我们使用无新 UNet 架构训练了一个 AI 模型。Dice 相似系数量化了 AI 和放射科医生之间的重叠程度。Spearman 相关系数(r)用于表示 PPV 与肺功能测试指标之间的相关性。当记录下来时,这些指标包括肺活量(VC)、用力肺活量(FVC)和一氧化碳弥散量(DLCO)。
我们在 5 个折叠中对 422 个 CT 扫描进行了训练,每次将不同的折叠(n = 84 至 85)作为测试集。在这些独立的测试集组合中,预测体积与真实值之间的相关性为 r = 0.90,中位数重叠度为 0.71 Dice 相似系数。我们发现 PPV 与 VC(n = 80,r = -0.40)和 FVC(n = 82,r = -0.38)之间存在弱至中度相关性,但与 DLCO(n = 84,r = -0.09)之间无相关性。当根据 PPV 的中位数对队列进行划分时,我们观察到更高 PPV 患者的 VC(P = 0.001)和 FVC(P = 0.04)值显著降低,但 DLCO 无显著变化(P = 0.19)。
我们成功开发了一种 AI 算法,能够自动分割 CT 图像中的 PP,从而实现快速提取体积。此外,我们发现 PPV 与 VC 和 FVC 的损失有关。