Hao ChaoBo, Xu Ruoyao, Li Boyang, Chen Yi, Jia QingYu, Wang ZhiQiang, Pei JiangXue, Zhang BoHua, Su Yaqiong, Li Jingrui, Dong Hua, Wu ZhaoXin, Jen Alex K-Y, Wang DongDong
School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.
Key Laboratory of Physical Electronics and Devices of Ministry of Education & Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
Angew Chem Int Ed Engl. 2025 Jul 21;64(30):e202508169. doi: 10.1002/anie.202508169. Epub 2025 May 24.
Suppressing the defects from SnO and perovskite interface is essential for the fabrication of large-area n-i-p perovskite solar cells (PSCs) with the needed lifetime and efficiency for commercialization. Here, we report the employment of l-citrulline (CIT), which has amino acid (─COOH, ─NH) and urea (─NH─CO─NH) groups, during SnO colloidal dispersion to function as a molecular bridge to modulate the SnO/perovskite buried interface. The amino acid group can effectively coordinate with Sn to passivate the oxygen vacancy defects of SnO, and the urea group can interact with uncoordinated Pb and I. These interactions not only improve the electron mobility of SnO but also facilitate the formation of larger grain-size perovskite film. In addition, they can also inhibit the generation of excess PbI and the nonphotoactive δ phase to result in suppressed trap-assisted nonradiative recombination. Consequently, the incorporation of CIT helps achieve a champion power conversion efficiency (PCE) of 25.95% (0.07065 cm) in PSC with improved shelf life/light soaking stability. When combined with an antisolvent-free slot-die coating technique in air, the solar modules (23.26 cm) could achieve a PCE of 22.70%, which is among the highest PCE reported so far.
抑制SnO与钙钛矿界面处的缺陷对于制造具有商业化所需寿命和效率的大面积n-i-p钙钛矿太阳能电池(PSC)至关重要。在此,我们报告了在SnO胶体分散过程中使用具有氨基酸(─COOH,─NH)和尿素(─NH─CO─NH)基团的L-瓜氨酸(CIT),作为分子桥来调节SnO/钙钛矿掩埋界面。氨基酸基团可以有效地与Sn配位以钝化SnO的氧空位缺陷,而尿素基团可以与未配位的Pb和I相互作用。这些相互作用不仅提高了SnO的电子迁移率,还促进了更大晶粒尺寸钙钛矿薄膜的形成。此外,它们还可以抑制过量PbI和非光活性δ相的产生,从而抑制陷阱辅助的非辐射复合。因此,加入CIT有助于在PSC中实现25.95%(0.07065 cm)的最佳功率转换效率(PCE),并提高了保质期/光浸泡稳定性。当与空气中的无反溶剂狭缝模涂技术相结合时,太阳能组件(23.26 cm)的PCE可以达到22.70%,这是迄今为止报道的最高PCE之一。