Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India.
ICAR-Indian Institute of Wheat and Barley Research, Agrasain Marg, PO BOX-158, Karnal, Haryana, India.
Sci Rep. 2023 Oct 31;13(1):18705. doi: 10.1038/s41598-023-45051-0.
The GRAS transcription factors are multifunctional proteins involved in various biological processes, encompassing plant growth, metabolism, and responses to both abiotic and biotic stresses. Wheat is an important cereal crop cultivated worldwide. However, no systematic study of the GRAS gene family and their functions under heat, drought, and salt stress tolerance and molecular dynamics modeling in wheat has been reported. In the present study, we identified the GRAS gene in Triticum aestivum through systematically performing gene structure analysis, chromosomal location, conserved motif, phylogenetic relationship, and expression patterns. A total of 177 GRAS genes were identified within the wheat genome. Based on phylogenetic analysis, these genes were categorically placed into 14 distinct subfamilies. Detailed analysis of the genetic architecture revealed that the majority of TaGRAS genes had no intronic regions. The expansion of the wheat GRAS gene family was proven to be influenced by both segmental and tandem duplication events. The study of collinearity events between TaGRAS and analogous orthologs from other plant species provided valuable insights into the evolution of the GRAS gene family in wheat. It is noteworthy that the promoter regions of TaGRAS genes consistently displayed an array of cis-acting elements that are associated with stress responses and hormone regulation. Additionally, we discovered 14 miRNAs that target key genes involved in three stress-responsive pathways in our study. Moreover, an assessment of RNA-seq data and qRT-PCR results revealed a significant increase in the expression of TaGRAS genes during abiotic stress. These findings highlight the crucial role of TaGRAS genes in mediating responses to different environmental stresses. Our research delved into the molecular dynamics and structural aspects of GRAS domain-DNA interactions, marking the first instance of such information being generated. Overall, the current findings contribute to our understanding of the organization of the GRAS genes in the wheat genome. Furthermore, we identified TaGRAS27 as a candidate gene for functional research, and to improve abiotic stress tolerance in the wheat by molecular breeding.
GRAS 转录因子是多功能蛋白,参与多种生物学过程,包括植物生长、代谢以及对非生物和生物胁迫的响应。小麦是全球广泛种植的重要粮食作物。然而,目前尚未有关于小麦中 GRAS 基因家族及其在耐热、耐旱和耐盐性方面的功能以及分子动力学建模的系统研究。在本研究中,我们通过系统地进行基因结构分析、染色体定位、保守基序、系统发育关系和表达模式,在普通小麦中鉴定出了 GRAS 基因。在小麦基因组中鉴定出了 177 个 GRAS 基因。基于系统发育分析,这些基因被分类为 14 个不同的亚家族。对遗传结构的详细分析表明,大多数 TaGRAS 基因没有内含子。小麦 GRAS 基因家族的扩张被证明受到片段和串联重复事件的影响。对 TaGRAS 与其他植物同源物之间的共线性事件的研究为小麦 GRAS 基因家族的进化提供了有价值的见解。值得注意的是,TaGRAS 基因启动子区域一致显示出一系列与应激反应和激素调节相关的顺式作用元件。此外,我们在研究中发现了 14 个靶向三个应激响应途径中关键基因的 miRNA。此外,对 RNA-seq 数据和 qRT-PCR 结果的评估表明,在非生物胁迫下,TaGRAS 基因的表达显著增加。这些发现强调了 TaGRAS 基因在介导对不同环境胁迫的响应中的关键作用。我们的研究深入探讨了 GRAS 结构域-DNA 相互作用的分子动力学和结构方面,这是首次生成此类信息。总的来说,目前的研究结果有助于我们理解小麦基因组中 GRAS 基因的组织。此外,我们鉴定了 TaGRAS27 作为候选基因进行功能研究,并通过分子育种提高小麦的非生物胁迫耐受性。