Suppr超能文献

足球的人工智能变革:深度学习对足球疫情研究演变的分析

Soccer's AI transformation: deep learning's analysis of soccer's pandemic research evolution.

作者信息

Lee Jea Woog, Song Sangmin, Kim YoungBin, Park Seung-Bo, Han Doug Hyun

机构信息

Intelligent Information Processing Lab, Chung-Ang University, Seoul, Republic of Korea.

Department of Artificial Intelligence, Chung-Ang University, Seoul, Republic of Korea.

出版信息

Front Psychol. 2023 Oct 16;14:1244404. doi: 10.3389/fpsyg.2023.1244404. eCollection 2023.

Abstract

INTRODUCTION

This paper aims to identify and compare changes in trends and research interests in soccer articles from before and during the COVID-19 pandemic.

METHODS

We compared research interests and trends in soccer-related journal articles published before COVID-19 (2018-2020) and during the COVID-19 pandemic (2021-2022) using Bidirectional Encoder Representations from Transformers (BERT) topic modeling.

RESULTS

In both periods, we categorized the social sciences into psychology, sociology, business, and technology, with some interdisciplinary research topics identified, and we identified changes during the COVID-19 pandemic period, including a new approach to home advantage. Furthermore, Sports science and sports medicine had a vast array of subject areas and topics, but some similar themes emerged in both periods and found changes before and during COVID-19. These changes can be broadly categorized into (a) Social Sciences and Technology; (b) Performance training approaches; (c) injury part of body. With training topics being more prominent than match performance during the pandemic; and changes within injuries, with the lower limbs becoming more prominent than the head during the pandemic.

CONCLUSION

Now that the pandemic has ended, soccer environments and routines have returned to pre-pandemic levels, but the environment that have changed during the pandemic provide an opportunity for researchers and practitioners in the field of soccer to detect post-pandemic changes and identify trends and future directions for research.

摘要

引言

本文旨在识别和比较新冠疫情之前及期间足球相关文章的趋势和研究兴趣的变化。

方法

我们使用来自Transformer的双向编码器表征(BERT)主题建模,比较了在新冠疫情之前(2018 - 2020年)和新冠疫情期间(2021 - 2022年)发表的足球相关期刊文章的研究兴趣和趋势。

结果

在这两个时期,我们将社会科学分为心理学、社会学、商业和技术,并确定了一些跨学科研究主题,我们还确定了新冠疫情期间的变化,包括一种关于主场优势的新方法。此外,体育科学和运动医学有大量的学科领域和主题,但在两个时期都出现了一些相似的主题,并发现了新冠疫情之前和期间的变化。这些变化大致可分为:(a)社会科学与技术;(b)表现训练方法;(c)身体受伤部位。在疫情期间,训练主题比比赛表现更为突出;在受伤情况方面也有变化,疫情期间下肢受伤比头部受伤更为突出。

结论

既然疫情已经结束,足球环境和日常活动已恢复到疫情前的水平,但疫情期间发生变化的环境为足球领域的研究人员和从业者提供了一个机会,以检测疫情后的变化,并确定研究趋势和未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64f1/10613686/9a7a948a13b8/fpsyg-14-1244404-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验