文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

cytoNet:细胞群落的时空网络分析。

cytoNet: Spatiotemporal network analysis of cell communities.

机构信息

Department of Bioengineering, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America.

Department of Bioengineering, Rice University, Houston, Texas, United States of America.

出版信息

PLoS Comput Biol. 2022 Jun 13;18(6):e1009846. doi: 10.1371/journal.pcbi.1009846. eCollection 2022 Jun.


DOI:10.1371/journal.pcbi.1009846
PMID:35696439
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9191702/
Abstract

We introduce cytoNet, a cloud-based tool to characterize cell populations from microscopy images. cytoNet quantifies spatial topology and functional relationships in cell communities using principles of network science. Capturing multicellular dynamics through graph features, cytoNet also evaluates the effect of cell-cell interactions on individual cell phenotypes. We demonstrate cytoNet's capabilities in four case studies: 1) characterizing the temporal dynamics of neural progenitor cell communities during neural differentiation, 2) identifying communities of pain-sensing neurons in vivo, 3) capturing the effect of cell community on endothelial cell morphology, and 4) investigating the effect of laminin α4 on perivascular niches in adipose tissue. The analytical framework introduced here can be used to study the dynamics of complex cell communities in a quantitative manner, leading to a deeper understanding of environmental effects on cellular behavior. The versatile, cloud-based format of cytoNet makes the image analysis framework accessible to researchers across domains.

摘要

我们介绍了 cytoNet,这是一个基于云的工具,用于从显微镜图像中描述细胞群体。cytoNet 使用网络科学原理来量化细胞群落的空间拓扑和功能关系。通过图特征捕获多细胞动力学,cytoNet 还评估了细胞间相互作用对单个细胞表型的影响。我们在四个案例研究中展示了 cytoNet 的功能:1)描述神经祖细胞群体在神经分化过程中的时空动态,2)在体内识别疼痛感受神经元群落,3)捕捉细胞群落对内皮细胞形态的影响,4)研究层粘连蛋白α4 对脂肪组织血管周龛的影响。这里介绍的分析框架可用于以定量方式研究复杂细胞群落的动态,从而更深入地了解环境对细胞行为的影响。cytoNet 灵活的基于云的格式使图像分析框架可供跨领域的研究人员使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99f2/9191702/4d7b1893f435/pcbi.1009846.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99f2/9191702/3f7519ef6cb4/pcbi.1009846.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99f2/9191702/84a67c0d76e7/pcbi.1009846.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99f2/9191702/87ca5201de9d/pcbi.1009846.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99f2/9191702/3e4dede33df5/pcbi.1009846.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99f2/9191702/4d7b1893f435/pcbi.1009846.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99f2/9191702/3f7519ef6cb4/pcbi.1009846.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99f2/9191702/84a67c0d76e7/pcbi.1009846.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99f2/9191702/87ca5201de9d/pcbi.1009846.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99f2/9191702/3e4dede33df5/pcbi.1009846.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99f2/9191702/4d7b1893f435/pcbi.1009846.g005.jpg

相似文献

[1]
cytoNet: Spatiotemporal network analysis of cell communities.

PLoS Comput Biol. 2022-6

[2]
CytoNet: an efficient dual attention based automatic prediction of cancer sub types in cytology studies.

Sci Rep. 2024-10-28

[3]
Dynamic Graph Representation Learning for Spatio-Temporal Neuroimaging Analysis.

IEEE Trans Cybern. 2025-3

[4]
Analytics and visualization tools to characterize single-cell stochasticity using bacterial single-cell movie cytometry data.

BMC Bioinformatics. 2021-10-29

[5]
A novel graph neural network based approach for influenza-like illness nowcasting: exploring the interplay of temporal, geographical, and functional spatial features.

BMC Public Health. 2025-2-1

[6]
An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images.

J Vis Exp. 2012-8-31

[7]
Correction: cytoNet: Spatiotemporal network analysis of cell communities.

PLoS Comput Biol. 2022-11-8

[8]
Correction: cytoNet: Spatiotemporal network analysis of cell communities.

PLoS Comput Biol. 2025-6-10

[9]
Automated image-based analysis of spatio-temporal fungal dynamics.

Fungal Genet Biol. 2015-11

[10]
Advances and opportunities in image analysis of bacterial cells and communities.

FEMS Microbiol Rev. 2021-8-17

引用本文的文献

[1]
New Spatial Phenotypes from Imaging Uncover Survival Differences for Breast Cancer Patients.

ACM BCB. 2024-11

[2]
Nascent actin dynamics and the disruption of calcium dynamics by actin arrest in developing neural cell networks.

Commun Biol. 2025-7-1

[3]
Correction: cytoNet: Spatiotemporal network analysis of cell communities.

PLoS Comput Biol. 2025-6-10

[4]
Topological data analysis of pattern formation of human induced pluripotent stem cell colonies.

Sci Rep. 2025-4-4

[5]
Calcium Imaging in Drosophila.

Methods Mol Biol. 2025

[6]
From pixels to connections: exploring in vitro neuron reconstruction software for network graph generation.

Commun Biol. 2024-5-15

[7]
Extended methods for spatial cell classification with DBSCAN-CellX.

Sci Rep. 2023-11-1

[8]
In Vivo Calcium Imaging of Neuronal Ensembles in Networks of Primary Sensory Neurons in Intact Dorsal Root Ganglia.

J Vis Exp. 2023-2-10

[9]
Spatial statistics is a comprehensive tool for quantifying cell neighbor relationships and biological processes via tissue image analysis.

Cell Rep Methods. 2022-11-21

[10]
Correction: cytoNet: Spatiotemporal network analysis of cell communities.

PLoS Comput Biol. 2022-11-8

本文引用的文献

[1]
Deep Visual Proteomics defines single-cell identity and heterogeneity.

Nat Biotechnol. 2022-8

[2]
nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer.

Cell Syst. 2020-5-20

[3]
Integrins and extracellular matrix proteins modulate adipocyte thermogenic capacity.

Sci Rep. 2021-3-8

[4]
The Tumor Profiler Study: integrated, multi-omic, functional tumor profiling for clinical decision support.

Cancer Cell. 2021-3-8

[5]
Optimization of Co-Culture Conditions for a Human Vascularized Adipose Tissue Model.

Bioengineering (Basel). 2020-9-17

[6]
Coordinated Cellular Neighborhoods Orchestrate Antitumoral Immunity at the Colorectal Cancer Invasive Front.

Cell. 2020-9-3

[7]
EZcalcium: Open-Source Toolbox for Analysis of Calcium Imaging Data.

Front Neural Circuits. 2020

[8]
CytoMAP: A Spatial Analysis Toolbox Reveals Features of Myeloid Cell Organization in Lymphoid Tissues.

Cell Rep. 2020-4-21

[9]
PySpacell: A Python Package for Spatial Analysis of Cell Images.

Cytometry A. 2020-3

[10]
ilastik: interactive machine learning for (bio)image analysis.

Nat Methods. 2019-9-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索