Suppr超能文献

一种基于混沌的自适应平衡优化器算法,用于求解全局优化问题。

A chaos-based adaptive equilibrium optimizer algorithm for solving global optimization problems.

作者信息

Liu Yuting, Ding Hongwei, Wang Zongshan, Jin Gushen, Li Bo, Yang Zhijun, Dhiman Gaurav

机构信息

School of Information Science and Engineering, Yunnan University, Kunming, China.

Glasgow College, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Math Biosci Eng. 2023 Sep 4;20(9):17242-17271. doi: 10.3934/mbe.2023768.

Abstract

The equilibrium optimizer (EO) algorithm is a newly developed physics-based optimization algorithm, which inspired by a mixed dynamic mass balance equation on a controlled fixed volume. The EO algorithm has a number of strengths, such as simple structure, easy implementation, few parameters and its effectiveness has been demonstrated on numerical optimization problems. However, the canonical EO still presents some drawbacks, such as poor balance between exploration and exploitation operation, tendency to get stuck in local optima and low convergence accuracy. To tackle these limitations, this paper proposes a new EO-based approach with an adaptive gbest-guided search mechanism and a chaos mechanism (called a chaos-based adaptive equilibrium optimizer algorithm (ACEO)). Firstly, an adaptive gbest-guided mechanism is injected to enrich the population diversity and expand the search range. Next, the chaos mechanism is incorporated to enable the algorithm to escape from the local optima. The effectiveness of the developed ACEO is demonstrated on 23 classical benchmark functions, and compared with the canonical EO, EO variants and other frontier metaheuristic approaches. The experimental results reveal that the developed ACEO method remarkably outperforms the canonical EO and other competitors. In addition, ACEO is implemented to solve a mobile robot path planning (MRPP) task, and compared with other typical metaheuristic techniques. The comparison indicates that ACEO beats its competitors, and the ACEO algorithm can provide high-quality feasible solutions for MRPP.

摘要

平衡优化器(EO)算法是一种新开发的基于物理的优化算法,它受到控制固定体积下混合动态质量平衡方程的启发。EO算法具有许多优点,如结构简单、易于实现、参数少,并且其有效性已在数值优化问题上得到证明。然而,标准EO仍然存在一些缺点,如探索和利用操作之间的平衡较差、容易陷入局部最优以及收敛精度较低。为了解决这些限制,本文提出了一种基于EO的新方法,该方法具有自适应全局最优引导搜索机制和混沌机制(称为基于混沌的自适应平衡优化器算法(ACEO))。首先,注入自适应全局最优引导机制以丰富种群多样性并扩大搜索范围。其次,引入混沌机制以使算法能够逃离局部最优。在23个经典基准函数上证明了所开发的ACEO的有效性,并与标准EO、EO变体和其他前沿元启发式方法进行了比较。实验结果表明,所开发的ACEO方法明显优于标准EO和其他竞争对手。此外,将ACEO应用于解决移动机器人路径规划(MRPP)任务,并与其他典型的元启发式技术进行了比较。比较结果表明ACEO优于其竞争对手,并且ACEO算法可以为MRPP提供高质量的可行解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验