Suppr超能文献

一种基于人工蜂群的自适应量子平衡优化器用于特征选择。

A self-adaptive quantum equilibrium optimizer with artificial bee colony for feature selection.

作者信息

Zhong Changting, Li Gang, Meng Zeng, Li Haijiang, He Wanxin

机构信息

Department of Engineering Mechanics, State Key Laboratory of Structural Analyses for Industrial Equipment, Dalian University of Technology, Dalian, 116024, China; School of Civil Engineering and Architecture, Hainan University, Haikou 570228, China.

Department of Engineering Mechanics, State Key Laboratory of Structural Analyses for Industrial Equipment, Dalian University of Technology, Dalian, 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo, 315000, China.

出版信息

Comput Biol Med. 2023 Feb;153:106520. doi: 10.1016/j.compbiomed.2022.106520. Epub 2023 Jan 2.

Abstract

Feature selection (FS) is a popular data pre-processing technique in machine learning to extract the optimal features to maintain or increase the classification accuracy of the dataset, which is a combinatorial optimization problem, requiring a powerful optimizer to obtain the optimum subset. The equilibrium optimizer (EO) is a recent physical-based metaheuristic algorithm with good performance for various optimization problems, but it may encounter premature or the local convergence in feature selection. This work presents a self-adaptive quantum EO with artificial bee colony for feature selection, named SQEOABC. In the proposed algorithm, the quantum theory and the self-adaptive mechanism are employed into the updating rule of EO to enhance convergence, and the updating mechanism from the artificial bee colony is also incorporated into EO to achieve appropriate FS solutions. In the experiments, 25 benchmark datasets from the UCI repository are investigated to verify SQEOABC, which is compared with several state-of-the-art metaheuristic algorithms and the variants of EO. The statistical results of fitness values and accuracy demonstrate that SQEOABC has better performance than the compared algorithms and the variants of EO. Finally, a real-world FS problem from COVID-19 illustrates the effectiveness and superiority of SQEOABC.

摘要

特征选择(FS)是机器学习中一种流行的数据预处理技术,用于提取最优特征以维持或提高数据集的分类准确率,这是一个组合优化问题,需要强大的优化器来获得最优子集。平衡优化器(EO)是一种基于物理的新型元启发式算法,在各种优化问题上表现良好,但在特征选择中可能会遇到早熟或局部收敛问题。本文提出了一种用于特征选择的带有人工蜂群的自适应量子平衡优化器,称为SQEOABC。在所提出的算法中,量子理论和自适应机制被应用于平衡优化器的更新规则以增强收敛性,并且人工蜂群的更新机制也被纳入平衡优化器以获得合适的特征选择解决方案。在实验中,研究了来自UCI数据库的25个基准数据集以验证SQEOABC,并将其与几种先进的元启发式算法以及平衡优化器的变体进行比较。适应度值和准确率的统计结果表明,SQEOABC比所比较的算法和平衡优化器的变体具有更好的性能。最后,一个来自新冠肺炎的实际特征选择问题说明了SQEOABC的有效性和优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验