Suppr超能文献

酰基笼蔽罗丹明:用于早期阿尔茨海默病小鼠神经功能恢复的光控和自校准乙酰基自由基生成

Acyl-caged rhodamines: photo-controlled and self-calibrated generation of acetyl radicals for neural function recovery in early AD mice.

作者信息

Luo Xiao, Zhang Zhonghui, Wang Jie, Wang Xueli, Zhang Yani, Chen Jinquan, Ge Guangbo, Yang Wen, Qian Xuhong, Tian Yang, Yang Youjun

机构信息

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Dongchuan Road 500 Shanghai 200241 China

Department of Molecular and Cellular Biochemistry, School of Medicine, Shanghai Jiaotong University Chongqing South Road 280 Shanghai 200025 China

出版信息

Chem Sci. 2023 Sep 14;14(42):11689-11698. doi: 10.1039/d3sc03035k. eCollection 2023 Nov 1.

Abstract

The biological function of radicals is a broad continuum from signaling to killing. Yet, biomedical exploitation of radicals is largely restricted to the theme of healing-by-killing. To explore their potential in healing-by-signaling, robust radical generation methods are warranted. Acyl radicals are endogenous, exhibit facile chemistry and elicit matrix-dependent biological outcomes. Their implications in health and disease remain untapped, primarily due to the lack of a robust generation method with spatiotemporal specificity. Fusing the Norrish chemistry into the xanthene scaffold, we developed a novel general and modular molecular design strategy for photo-triggered generation of acyl radicals, , acyl-caged rhodamine (ACR). A notable feature of ACR is the simultaneous release of a fluorescent probe for cell redox homeostasis allowing real-time monitoring of the biological outcome of acyl radicals. With a donor of the endogenous acetyl radical (ACR575a), we showcased its capability in precise and continuous modulation of the cell redox homeostasis from signaling to stress, and induction of a local oxidative burst to promote differentiation of neural stem cells (NSCs). Upon intracerebral-injection of ACR575a and subsequent fiber-optical activation, early AD mice exhibited enhanced differentiation of NSCs toward neurons, reduced formation of Aβ plaques, and significantly improved cognitive abilities, including learning and memory.

摘要

自由基的生物学功能涵盖了从信号传导到杀伤的广泛连续过程。然而,自由基在生物医学领域的应用在很大程度上局限于“杀伤性治疗”这一主题。为了探索它们在“信号传导性治疗”中的潜力,需要强大的自由基生成方法。酰基自由基是内源性的,具有简便的化学反应特性,并能引发依赖于基质的生物学效应。它们在健康和疾病中的影响尚未得到充分挖掘,主要是由于缺乏一种具有时空特异性的强大生成方法。我们将诺里什化学与呫吨支架相结合,开发了一种新颖的通用模块化分子设计策略,用于光触发生成酰基自由基,即酰基笼蔽罗丹明(ACR)。ACR的一个显著特点是同时释放一种用于细胞氧化还原稳态的荧光探针,从而能够实时监测酰基自由基的生物学效应。以内源性乙酰自由基供体(ACR575a)为例,我们展示了其精确且连续地调节细胞氧化还原稳态的能力,从信号传导到应激,并诱导局部氧化爆发以促进神经干细胞(NSC)的分化。在向脑内注射ACR575a并随后进行光纤激活后,早期阿尔茨海默病小鼠表现出神经干细胞向神经元的分化增强、Aβ斑块形成减少,以及包括学习和记忆在内的认知能力显著改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0293/10619617/0c0d63aa03fd/d3sc03035k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验