文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

无绳光热深部脑刺激在近红外二区宽场照明下的自由行为小鼠中的应用。

Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window.

机构信息

Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.

Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.

出版信息

Nat Biomed Eng. 2022 Jun;6(6):754-770. doi: 10.1038/s41551-022-00862-w. Epub 2022 Mar 21.


DOI:10.1038/s41551-022-00862-w
PMID:35314800
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9232843/
Abstract

Neural circuitry is typically modulated via invasive brain implants and tethered optical fibres in restrained animals. Here we show that wide-field illumination in the second near-infrared spectral window (NIR-II) enables implant-and-tether-free deep-brain stimulation in freely behaving mice with stereotactically injected macromolecular photothermal transducers activating neurons ectopically expressing the temperature-sensitive transient receptor potential cation channel subfamily V member 1 (TRPV1). The macromolecular transducers, ~40 nm in size and consisting of a semiconducting polymer core and an amphiphilic polymer shell, have a photothermal conversion efficiency of 71% at 1,064 nm, the wavelength at which light attenuation by brain tissue is minimized (within the 400-1,800 nm spectral window). TRPV1-expressing neurons in the hippocampus, motor cortex and ventral tegmental area of mice can be activated with minimal thermal damage on wide-field NIR-II illumination from a light source placed at distances higher than 50 cm above the animal's head and at an incident power density of 10 mW mm. Deep-brain stimulation via wide-field NIR-II illumination may open up opportunities for social behavioural studies in small animals.

摘要

神经回路通常通过侵入性脑植入物和束缚动物的 tethered 光纤进行调制。在这里,我们展示了在第二个近红外光谱窗口 (NIR-II) 中的宽场照明,可以在通过立体注射大分子光热转导剂激活异位表达温度敏感瞬时受体电位阳离子通道亚家族 V 成员 1 (TRPV1) 的神经元的自由行为小鼠中实现植入和无绳深部脑刺激。大分子转导剂的尺寸约为 40nm,由半导体聚合物核和两亲聚合物壳组成,在 1064nm 的波长下具有 71%的光热转换效率,该波长下脑组织的光衰减最小(在 400-1800nm 光谱窗口内)。可以通过放置在距动物头部上方 50cm 以上的光源进行宽场 NIR-II 照明,以最小的热损伤激活小鼠海马、运动皮层和腹侧被盖区中表达 TRPV1 的神经元,并且入射功率密度为 10mW/mm。通过宽场 NIR-II 照明进行深部脑刺激可能为小动物的社会行为研究开辟机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a51b/9232843/76ee07c5a999/nihms-1757579-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a51b/9232843/572045ef6ad0/nihms-1757579-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a51b/9232843/826056f8718d/nihms-1757579-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a51b/9232843/c5653b82d84c/nihms-1757579-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a51b/9232843/c5ab47851290/nihms-1757579-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a51b/9232843/22f031dc7044/nihms-1757579-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a51b/9232843/76ee07c5a999/nihms-1757579-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a51b/9232843/572045ef6ad0/nihms-1757579-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a51b/9232843/826056f8718d/nihms-1757579-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a51b/9232843/c5653b82d84c/nihms-1757579-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a51b/9232843/c5ab47851290/nihms-1757579-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a51b/9232843/22f031dc7044/nihms-1757579-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a51b/9232843/76ee07c5a999/nihms-1757579-f0006.jpg

相似文献

[1]
Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window.

Nat Biomed Eng. 2022-6

[2]
Protocol for wireless deep brain stimulation in freely behaving mice with infrared light.

STAR Protoc. 2023-3-17

[3]
Antibody-conjugated gold nanoparticles as nanotransducers for second near-infrared photo-stimulation of neurons in rats.

Nano Converg. 2022-3-21

[4]
In Vivo Observations of Rapid Scattered Light Changes Associated with Neurophysiological Activity

2009

[5]
Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices.

Biomaterials. 2017-7-12

[6]
Dual Behavior Regulation: Tether-Free Deep-Brain Stimulation by Photothermal and Upconversion Hybrid Nanoparticles.

Adv Mater. 2023-5

[7]
Dual-Peak Absorbing Semiconducting Copolymer Nanoparticles for First and Second Near-Infrared Window Photothermal Therapy: A Comparative Study.

Adv Mater. 2018-2-19

[8]
Semiconducting Polymer Nanoparticles as Theranostic System for Near-Infrared-II Fluorescence Imaging and Photothermal Therapy under Safe Laser Fluence.

ACS Nano. 2020-2-7

[9]
Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging.

Biomaterials. 2017-11-14

[10]
Co-delivery of NIR-II semiconducting polymer and pH-sensitive doxorubicin-conjugated prodrug for photothermal/chemotherapy.

Acta Biomater. 2022-1-1

引用本文的文献

[1]
Implantable bioelectronic devices for photoelectrochemical and electrochemical modulation of cells and tissues.

Nat Rev Bioeng. 2025-6

[2]
High-Precision, Low-Threshold Neuromodulation With Ultraflexible Electrode Arrays for Brain-to-Brain Interfaces.

Exploration (Beijing). 2025-4-17

[3]
Nanomaterials engineered for photothermal therapy in neural tumors and neurodegenerative diseases: biomaterial design, clinical mechanisms and applications.

Front Bioeng Biotechnol. 2025-7-21

[4]
An ultrasound-scanning light source.

Res Sq. 2025-6-19

[5]
Instant noninvasive near-infrared deep brain stimulation using optoelectronic nanoparticles without genetic modification.

Sci Adv. 2025-6-13

[6]
Integrating optical neuroscience tools into touchscreen operant systems.

Nat Protoc. 2025-5-23

[7]
Genetics-Based Targeting Strategies for Precise Neuromodulation.

Adv Sci (Weinh). 2025-7

[8]
Recent Progress of Soft and Bioactive Materials in Flexible Bioelectronics.

Cyborg Bionic Syst. 2025-4-29

[9]
Practical implementation and impact of the 4R principles in ethnopharmacology: Pursuing a more humane approach to research.

Front Pharmacol. 2025-3-28

[10]
Nanotechnology-Fortified Manipulation of Cell Ca Signaling.

Small Sci. 2024-6-26

本文引用的文献

[1]
Deep brain optogenetics without intracranial surgery.

Nat Biotechnol. 2021-2

[2]
Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals.

Nat Methods. 2020-7-13

[3]
Restoring light sensitivity using tunable near-infrared sensors.

Science. 2020-6-5

[4]
An Ultra-Sensitive Step-Function Opsin for Minimally Invasive Optogenetic Stimulation in Mice and Macaques.

Neuron. 2020-4-29

[5]
The mazes with minds of their own.

Nature. 2018-3

[6]
Nanoscale Heat Transfer from Magnetic Nanoparticles and Ferritin in an Alternating Magnetic Field.

Biophys J. 2020-3-24

[7]
Neuronal firing modulation by a membrane-targeted photoswitch.

Nat Nanotechnol. 2020-2-3

[8]
Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing.

Proc Natl Acad Sci U S A. 2020-1-15

[9]
The Neural Basis for Response Latency in a Sensory-Motor Behavior.

Cereb Cortex. 2020-5-14

[10]
Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics.

Proc Natl Acad Sci U S A. 2019-12-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索