Drexel University, Philadelphia, Pennsylvania 19104, United States.
Colorado State University, Fort Collins, Colorado 80523, United States.
Environ Sci Technol. 2023 Nov 14;57(45):17374-17383. doi: 10.1021/acs.est.3c04183. Epub 2023 Nov 6.
Cooking activities emit myriad low-volatility, semivolatile, and highly volatile organic compounds that together form particles that can accumulate to large indoor concentrations. Absorptive partitioning thermodynamics governs the particle-phase organic aerosol concentration mainly via temperature and sorbing mass impacts. Cooking activities can increase the organic sorbing mass by 1-2 orders of magnitude, increasing particle-phase concentrations and affecting emission rate calculations. Although recent studies have begun to probe the volatility characteristics of indoor cooking particles, parametrizations of cooking particle mass emissions have largely neglected these thermodynamic considerations. Here, we present an improved thermodynamics-based model framework for estimating condensable organic material emission rates from a time series of observed concentrations, given that adequate measurements or assumptions can be made about the volatility of the emitted species. We demonstrate the performance of this methodology by applying data from stir-frying experiments performed during the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign to a two-zone box model representing the UTest House. Preliminary estimates of organic mass emitted on a per-stir-fry basis for three types of organic aerosol factors are presented. Our analysis highlights that using traditional nonvolatile particle models and emission characterizations for some organic aerosol emitting activities can incorrectly attribute concentration changes to emissions rather than thermodynamic effects.
烹饪活动会排放出大量低挥发性、半挥发性和高挥发性有机化合物,这些化合物共同形成颗粒,可以在室内积聚到很高的浓度。吸收分配热力学主要通过温度和吸附质量的影响来控制颗粒相有机气溶胶的浓度。烹饪活动会使有机吸附质量增加 1-2 个数量级,从而增加颗粒相浓度并影响排放率的计算。尽管最近的研究已经开始探究室内烹饪颗粒的挥发性特征,但烹饪颗粒质量排放的参数化在很大程度上忽略了这些热力学考虑。在这里,我们提出了一个改进的基于热力学的模型框架,用于根据观察到的浓度时间序列估算可冷凝有机物质的排放率,前提是可以对排放物质的挥发性进行充分的测量或假设。我们通过将 HOMEChem 运动期间进行的炒菜实验的数据应用于代表 UTest 房屋的两区域箱模型,展示了该方法的性能。我们初步估计了三种有机气溶胶因子的每一次炒菜所排放的有机质量。我们的分析强调,对于某些有机气溶胶排放活动,使用传统的非挥发性颗粒模型和排放特征可能会错误地将浓度变化归因于排放,而不是热力学效应。