Department of Medicine, Barking Havering and Redbridge University Hospitals NHS Trust, London, UK
Department of Anaesthetics, Princess Alexandra Hospital, Harlow, UK.
Br J Ophthalmol. 2024 Sep 20;108(10):1379-1383. doi: 10.1136/bjo-2023-324091.
BACKGROUND: Chat Generative Pre-trained Transformer (ChatGPT), a large language model by OpenAI, and Bard, Google's artificial intelligence (AI) chatbot, have been evaluated in various contexts. This study aims to assess these models' proficiency in the part 1 Fellowship of the Royal College of Ophthalmologists (FRCOphth) Multiple Choice Question (MCQ) examination, highlighting their potential in medical education. METHODS: Both models were tested on a sample question bank for the part 1 FRCOphth MCQ exam. Their performances were compared with historical human performance on the exam, focusing on the ability to comprehend, retain and apply information related to ophthalmology. We also tested it on the book 'MCQs for FRCOpth part 1', and assessed its performance across subjects. RESULTS: ChatGPT demonstrated a strong performance, surpassing historical human pass marks and examination performance, while Bard underperformed. The comparison indicates the potential of certain AI models to match, and even exceed, human standards in such tasks. CONCLUSION: The results demonstrate the potential of AI models, such as ChatGPT, in processing and applying medical knowledge at a postgraduate level. However, performance varied among different models, highlighting the importance of appropriate AI selection. The study underlines the potential for AI applications in medical education and the necessity for further investigation into their strengths and limitations.
背景:OpenAI 的大型语言模型 Chat Generative Pre-trained Transformer(ChatGPT)和谷歌的人工智能(AI)聊天机器人 Bard 在各种场景下都得到了评估。本研究旨在评估这些模型在皇家眼科医师学院(FRCOphth)第 1 部分多项选择题(MCQ)考试中的熟练程度,强调其在医学教育中的潜在应用。
方法:我们对第 1 部分 FRCOphth MCQ 考试的样本题库进行了模型测试。我们重点关注理解、保留和应用与眼科相关信息的能力,将其表现与该考试的历史人类表现进行了比较。我们还在《FRCOpth 第 1 部分 MCQs》一书中对其进行了测试,并评估了其在不同科目上的表现。
结果:ChatGPT 表现出色,超越了历史人类及格分数和考试表现,而 Bard 的表现则欠佳。比较结果表明,某些 AI 模型在完成此类任务时具有匹配甚至超越人类标准的潜力。
结论:研究结果表明,人工智能模型(如 ChatGPT)在处理和应用研究生水平的医学知识方面具有潜力。然而,不同模型之间的性能存在差异,这突出了选择合适 AI 模型的重要性。本研究强调了 AI 在医学教育中的应用潜力,以及进一步研究其优势和局限性的必要性。
Br J Ophthalmol. 2024-9-20
Acad Radiol. 2024-5
Graefes Arch Clin Exp Ophthalmol. 2025-2
J Neuroophthalmol. 2024-10-10
Adv Med Educ Pract. 2025-8-5
Med Sci Educ. 2024-11-13
Ophthalmol Sci. 2024-12-17