Suppr超能文献

巴德和ChatGPT在内分泌学、糖尿病及糖尿病技术方面的科学知识:基于多项选择题考试的表现

The Scientific Knowledge of Bard and ChatGPT in Endocrinology, Diabetes, and Diabetes Technology: Multiple-Choice Questions Examination-Based Performance.

作者信息

Meo Sultan Ayoub, Al-Khlaiwi Thamir, AbuKhalaf Abdulelah Adnan, Meo Anusha Sultan, Klonoff David C

机构信息

Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.

College of Medicine, King Saud University, Riyadh, Saudi Arabia.

出版信息

J Diabetes Sci Technol. 2025 May;19(3):705-710. doi: 10.1177/19322968231203987. Epub 2023 Oct 5.

Abstract

BACKGROUND

The present study aimed to investigate the knowledge level of Bard and ChatGPT in the areas of endocrinology, diabetes, and diabetes technology through a multiple-choice question (MCQ) examination format.

METHODS

Initially, a 100-MCQ bank was established based on MCQs in endocrinology, diabetes, and diabetes technology. The MCQs were created from physiology, medical textbooks, and academic examination pools in the areas of endocrinology, diabetes, and diabetes technology and academic examination pools. The study team members analyzed the MCQ contents to ensure that they were related to the endocrinology, diabetes, and diabetes technology. The number of MCQs from endocrinology was 50, and that from diabetes and science technology was also 50. The knowledge level of Google's Bard and ChatGPT was assessed with an MCQ-based examination.

RESULTS

In the endocrinology examination section, ChatGPT obtained 29 marks (correct responses) of 50 (58%), and Bard obtained a similar score of 29 of 50 (58%). However, in the diabetes technology examination section, ChatGPT obtained 23 marks of 50 (46%), and Bard obtained 20 marks of 50 (40%). Overall, in the entire three-part examination, ChatGPT obtained 52 marks of 100 (52%), and Bard obtained 49 marks of 100 (49%). ChatGPT obtained slightly more marks than Bard. However, both ChatGPT and Bard did not achieve satisfactory scores in endocrinology or diabetes/technology of at least 60%.

CONCLUSIONS

The overall MCQ-based performance of ChatGPT was slightly better than that of Google's Bard. However, both ChatGPT and Bard did not achieve appropriate scores in endocrinology and diabetes/diabetes technology. The study indicates that Bard and ChatGPT have the potential to facilitate medical students and faculty in academic medical education settings, but both artificial intelligence tools need more updated information in the fields of endocrinology, diabetes, and diabetes technology.

摘要

背景

本研究旨在通过多项选择题(MCQ)考试形式,调查Bard和ChatGPT在内分泌学、糖尿病及糖尿病技术领域的知识水平。

方法

最初,基于内分泌学、糖尿病及糖尿病技术方面的多项选择题建立了一个包含100道题的题库。这些多项选择题取自内分泌学、糖尿病及糖尿病技术领域的生理学、医学教科书和学术考试题库。研究团队成员分析了多项选择题的内容,以确保它们与内分泌学、糖尿病及糖尿病技术相关。内分泌学方面的多项选择题有50道,糖尿病及科学技术方面的也有50道。通过基于多项选择题的考试评估了谷歌的Bard和ChatGPT的知识水平。

结果

在内分泌学考试部分,ChatGPT在50道题中获得了29分(正确答案)(58%),Bard获得了类似的分数,50道题中答对29道(58%)。然而,在糖尿病技术考试部分,ChatGPT在50道题中获得了23分(46%),Bard在50道题中获得了20分(40%)。总体而言,在整个三部分考试中,ChatGPT在100道题中获得了52分(52%),Bard在100道题中获得了49分(49%)。ChatGPT获得的分数比Bard略多。然而,ChatGPT和Bard在内分泌学或糖尿病/技术方面都没有达到至少60%的满意分数。

结论

基于多项选择题的ChatGPT总体表现略优于谷歌的Bard。然而,ChatGPT和Bard在内分泌学以及糖尿病/糖尿病技术方面都没有取得合适的分数。该研究表明,Bard和ChatGPT有潜力在学术医学教育环境中帮助医学生和教师,但这两个人工智能工具在内分泌学、糖尿病及糖尿病技术领域都需要更多更新的信息。

相似文献

引用本文的文献

1
The Generation and Use of Medical MCQs: A Narrative Review.医学多项选择题的生成与应用:一篇叙述性综述
Adv Med Educ Pract. 2025 Aug 5;16:1331-1340. doi: 10.2147/AMEP.S513119. eCollection 2025.

本文引用的文献

10
Using ChatGPT to Predict the Future of Diabetes Technology.利用ChatGPT预测糖尿病技术的未来。
J Diabetes Sci Technol. 2023 May;17(3):853-854. doi: 10.1177/19322968231161095. Epub 2023 Feb 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验