文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于病例报告的ChatGPT辅助诊断神经眼科疾病

ChatGPT Assisting Diagnosis of Neuro-Ophthalmology Diseases Based on Case Reports.

作者信息

Madadi Yeganeh, Delsoz Mohammad, Lao Priscilla A, Fong Joseph W, Hollingsworth T J, Kahook Malik Y, Yousefi Siamak

机构信息

Department of Ophthalmology (YM, MD, PAL, JWF, TJH, SY), University of Tennessee Health Science Center, Memphis, Tennessee; Department of Ophthalmology (MYK), University of Colorado School of Medicine, Aurora, Colorado; and Department of Genetics, Genomics, and Informatics (SY), University of Tennessee Health Science Center, Memphis, Tennessee.

出版信息

J Neuroophthalmol. 2024 Oct 10;45(3):301-306. doi: 10.1097/WNO.0000000000002274.


DOI:10.1097/WNO.0000000000002274
PMID:40830998
Abstract

BACKGROUND: To evaluate the accuracy of Chat Generative Pre-Trained Transformer (ChatGPT), a large language model (LLM), to assist in diagnosing neuro-ophthalmic diseases based on case reports. METHODS: We selected 22 different case reports of neuro-ophthalmic disorders from a publicly available online database. These cases included a wide range of chronic and acute diseases commonly seen by neuro-ophthalmologists. We inserted each case as a new prompt into ChatGPTs (GPT-3.5 and GPT-4) and asked for the most likely diagnosis. We then presented the exact information to 2 neuro-ophthalmologists and recorded their diagnoses, followed by comparing responses from both versions of ChatGPT. RESULTS: GPT-3.5 and GPT-4 and the 2 neuro-ophthalmologists were correct in 13 (59%), 18 (82%), 19 (86%), and 19 (86%) out of 22 cases, respectively. The agreements between the various diagnostic sources were as follows: GPT-3.5 and GPT-4, 13 (59%); GPT-3.5 and the first neuro-ophthalmologist, 12 (55%); GPT-3.5 and the second neuro-ophthalmologist, 12 (55%); GPT-4 and the first neuro-ophthalmologist, 17 (77%); GPT-4 and the second neuro-ophthalmologist, 16 (73%); and first and second neuro-ophthalmologists 17 (77%). CONCLUSIONS: The accuracy of GPT-3.5 and GPT-4 in diagnosing patients with neuro-ophthalmic disorders was 59% and 82%, respectively. With further development, GPT-4 may have the potential to be used in clinical care settings to assist clinicians in providing accurate diagnoses. The applicability of using LLMs like ChatGPT in clinical settings that lack access to subspeciality trained neuro-ophthalmologists deserves further research.

摘要

背景:为评估大型语言模型Chat生成式预训练变换器(ChatGPT)基于病例报告辅助诊断神经眼科疾病的准确性。 方法:我们从一个公开的在线数据库中选取了22份不同的神经眼科疾病病例报告。这些病例包括神经眼科医生常见的各种慢性和急性疾病。我们将每个病例作为新的提示输入到ChatGPT(GPT - 3.5和GPT - 4)中,并询问最可能的诊断。然后我们将确切信息呈现给2名神经眼科医生并记录他们的诊断结果,随后比较两个版本ChatGPT的回答。 结果:GPT - 3.5、GPT - 4以及2名神经眼科医生在22例病例中分别正确诊断了13例(59%)、18例(82%)、19例(86%)和19例(86%)。不同诊断来源之间的一致性如下:GPT - 3.5和GPT - 4为13例(59%);GPT - 3.5和第一位神经眼科医生为12例(55%);GPT - 3.5和第二位神经眼科医生为12例(55%);GPT - 4和第一位神经眼科医生为17例(77%);GPT - 4和第二位神经眼科医生为16例(73%);第一位和第二位神经眼科医生为17例(77%)。 结论:GPT - 3.5和GPT - 4在诊断神经眼科疾病患者时的准确率分别为59%和82%。随着进一步发展,GPT - 4可能有潜力用于临床护理环境,以协助临床医生提供准确的诊断。在缺乏经过专科培训神经眼科医生的临床环境中使用像ChatGPT这样的大型语言模型的适用性值得进一步研究。

相似文献

[1]
ChatGPT Assisting Diagnosis of Neuro-Ophthalmology Diseases Based on Case Reports.

J Neuroophthalmol. 2024-10-10

[2]
ChatGPT Assisting Diagnosis of Neuro-ophthalmology Diseases Based on Case Reports.

medRxiv. 2023-9-14

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
Evaluating multiple large language models on orbital diseases.

Front Cell Dev Biol. 2025-7-7

[5]
Comparison of ChatGPT and Internet Research for Clinical Research and Decision-Making in Occupational Medicine: Randomized Controlled Trial.

JMIR Form Res. 2025-5-20

[6]
Chat GPT vs an experienced ophthalmologist: evaluating chatbot writing performance in ophthalmology.

Eye (Lond). 2025-4-1

[7]
Use of ChatGPT Large Language Models to Extract Details of Recommendations for Additional Imaging From Free-Text Impressions of Radiology Reports.

AJR Am J Roentgenol. 2025-4

[8]
The potential of Generative Pre-trained Transformer 4 (GPT-4) to analyse medical notes in three different languages: a retrospective model-evaluation study.

Lancet Digit Health. 2025-1

[9]
Navigating the future of pediatric cardiovascular surgery: Insights and innovation powered by Chat Generative Pre-Trained Transformer (ChatGPT).

J Thorac Cardiovasc Surg. 2025-2-1

[10]
Large Language Models and Empathy: Systematic Review.

J Med Internet Res. 2024-12-11

引用本文的文献

[1]
Application prospect of large language model represented by ChatGPT in ophthalmology.

Int J Ophthalmol. 2025-9-18

[2]
Reply: Diagnosing Neuro-Ophthalmology Diseases Based on Case Reports: DeepSeek vs ChatGPT.

J Neuroophthalmol. 2025-6-13

[3]
Evaluating ChatGPT-4 Plus in Ophthalmology: Effect of Image Recognition and Domain-Specific Pretraining on Diagnostic Performance.

Diagnostics (Basel). 2025-7-19

[4]
GlaucoRAG: A Retrieval-Augmented Large Language Model for Expert-Level Glaucoma Assessment.

medRxiv. 2025-7-7

[5]
Evaluation and comparison of large language models' responses to questions related optic neuritis.

Front Med (Lausanne). 2025-6-25

[6]
Evaluating large language model workflows in clinical decision support for triage and referral and diagnosis.

NPJ Digit Med. 2025-5-9

[7]
Large Language Models: Pioneering New Educational Frontiers in Childhood Myopia.

Ophthalmol Ther. 2025-6

[8]
A systematic review and meta-analysis of diagnostic performance comparison between generative AI and physicians.

NPJ Digit Med. 2025-3-22

[9]
Accuracy of Artificial Intelligence Versus Clinicians in Real-Life Case Scenarios of Retinopathy of Prematurity.

Cureus. 2025-2-5

本文引用的文献

[1]
Reply to Comment on: Predicting Glaucoma Before Onset Using a Large Language Model Chatbot.

Am J Ophthalmol. 2024-10

[2]
Domain Adaptation-Based Deep Learning Model for Forecasting and Diagnosis of Glaucoma Disease.

Biomed Signal Process Control. 2024-6

[3]
Performance of ChatGPT in Diagnosis of Corneal Eye Diseases.

Cornea. 2024-5-1

[4]
Applications of artificial intelligence-enabled robots and chatbots in ophthalmology: recent advances and future trends.

Curr Opin Ophthalmol. 2024-5-1

[5]
Performance of ChatGPT and Bard on the official part 1 FRCOphth practice questions.

Br J Ophthalmol. 2024-9-20

[6]
Artificial intelligence in ophthalmology: The path to the real-world clinic.

Cell Rep Med. 2023-7-18

[7]
Evaluating the Performance of ChatGPT in Ophthalmology: An Analysis of Its Successes and Shortcomings.

Ophthalmol Sci. 2023-5-5

[8]
Performance of an Artificial Intelligence Chatbot in Ophthalmic Knowledge Assessment.

JAMA Ophthalmol. 2023-6-1

[9]
Mismatch in Supply and Demand for Neuro-Ophthalmic Care.

J Neuroophthalmol. 2022-3-1

[10]
Patient Harm Due to Diagnostic Error of Neuro-Ophthalmologic Conditions.

Ophthalmology. 2021-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索