Suppr超能文献

用于电池建模与预测的固有可解释物理信息神经网络

Inherently Interpretable Physics-Informed Neural Network for Battery Modeling and Prognosis.

作者信息

Wang Fujin, Zhi Quanquan, Zhao Zhibin, Zhai Zhi, Liu Yingkai, Xi Huan, Wang Shibin, Chen Xuefeng

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Jan;36(1):1145-1159. doi: 10.1109/TNNLS.2023.3329368. Epub 2025 Jan 7.

Abstract

Lithium-ion batteries are widely used in modern society. Accurate modeling and prognosis are fundamental to achieving reliable operation of lithium-ion batteries. Accurately predicting the end-of-discharge (EOD) is critical for operations and decision-making when they are deployed to critical missions. Existing data-driven methods have large model parameters, which require a large amount of labeled data and the models are not interpretable. Model-based methods need to know many parameters related to battery design, and the models are difficult to solve. To bridge these gaps, this study proposes a physics-informed neural network (PINN), called battery neural network (BattNN), for battery modeling and prognosis. Specifically, we propose to design the structure of BattNN based on the equivalent circuit model (ECM). Therefore, the entire BattNN is completely constrained by physics. Its forward propagation process follows the physical laws, and the model is inherently interpretable. To validate the proposed method, we conduct the discharge experiments under random loading profiles and develop our dataset. Analysis and experiments show that the proposed BattNN only needs approximately 30 samples for training, and the average required training time is 21.5 s. Experimental results on three datasets show that our method can achieve high prediction accuracy with only a few learnable parameters. Compared with other neural networks, the prediction MAEs of our BattNN are reduced by 77.1%, 67.4%, and 75.0% on three datasets, respectively. Our data and code will be available at: https://github.com/wang-fujin/BattNN.

摘要

锂离子电池在现代社会中被广泛使用。精确建模和预测是实现锂离子电池可靠运行的基础。当锂离子电池应用于关键任务时,准确预测放电终止(EOD)对于运行和决策至关重要。现有的数据驱动方法具有大量模型参数,这需要大量的标记数据,并且模型不可解释。基于模型的方法需要了解许多与电池设计相关的参数,并且模型难以求解。为了弥补这些差距,本研究提出了一种基于物理知识的神经网络(PINN),称为电池神经网络(BattNN),用于电池建模和预测。具体而言,我们建议基于等效电路模型(ECM)设计BattNN的结构。因此,整个BattNN完全受物理约束。其前向传播过程遵循物理定律,并且该模型本质上是可解释的。为了验证所提出的方法,我们在随机负载曲线下进行了放电实验并开发了我们的数据集。分析和实验表明,所提出的BattNN仅需要大约30个样本进行训练,平均所需训练时间为21.5秒。在三个数据集上的实验结果表明,我们的方法仅需几个可学习参数就能实现高预测精度。与其他神经网络相比,我们的BattNN在三个数据集上的预测平均绝对误差(MAE)分别降低了77.1%、67.4%和75.0%。我们的数据和代码将可在以下网址获取:https://github.com/wang-fujin/BattNN

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验