文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于无末端修复酶促甲基化测序的循环游离 DNA 和预训练神经网络早期检测肝细胞癌

Early detection of hepatocellular carcinoma via no end-repair enzymatic methylation sequencing of cell-free DNA and pre-trained neural network.

机构信息

Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.

BamRock Research Department, Suzhou BamRock Biotechnology Ltd., Suzhou, Jiangsu Province, China.

出版信息

Genome Med. 2023 Nov 8;15(1):93. doi: 10.1186/s13073-023-01238-8.


DOI:10.1186/s13073-023-01238-8
PMID:37936230
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10631027/
Abstract

BACKGROUND: Early detection of hepatocellular carcinoma (HCC) is important in order to improve patient prognosis and survival rate. Methylation sequencing combined with neural networks to identify cell-free DNA (cfDNA) carrying aberrant methylation offers an appealing and non-invasive approach for HCC detection. However, some limitations exist in traditional methylation detection technologies and models, which may impede their performance in the read-level detection of HCC. METHODS: We developed a low DNA damage and high-fidelity methylation detection method called No End-repair Enzymatic Methyl-seq (NEEM-seq). We further developed a read-level neural detection model called DeepTrace that can better identify HCC-derived sequencing reads through a pre-trained and fine-tuned neural network. After pre-training on 11 million reads from NEEM-seq, DeepTrace was fine-tuned using 1.2 million HCC-derived reads from tumor tissue DNA after noise reduction, and 2.7 million non-tumor reads from non-tumor cfDNA. We validated the model using data from 130 individuals with cfDNA whole-genome NEEM-seq at around 1.6X depth. RESULTS: NEEM-seq overcomes the drawbacks of traditional enzymatic methylation sequencing methods by avoiding the introduction of unmethylation errors in cfDNA. DeepTrace outperformed other models in identifying HCC-derived reads and detecting HCC individuals. Based on the whole-genome NEEM-seq data of cfDNA, our model showed high accuracy of 96.2%, sensitivity of 93.6%, and specificity of 98.5% in the validation cohort consisting of 62 HCC patients, 48 liver disease patients, and 20 healthy individuals. In the early stage of HCC (BCLC 0/A and TNM I), the sensitivity of DeepTrace was 89.6 and 89.5% respectively, outperforming Alpha Fetoprotein (AFP) which showed much lower sensitivity in both BCLC 0/A (50.5%) and TNM I (44.7%). CONCLUSIONS: By combining high-fidelity methylation data from NEEM-seq with the DeepTrace model, our method has great potential for HCC early detection with high sensitivity and specificity, making it potentially suitable for clinical applications. DeepTrace: https://github.com/Bamrock/DeepTrace.

摘要

背景:早期发现肝细胞癌(HCC)对于改善患者预后和生存率至关重要。利用甲基化测序结合神经网络来识别携带异常甲基化的游离 DNA(cfDNA),为 HCC 检测提供了一种有吸引力且非侵入性的方法。然而,传统甲基化检测技术和模型存在一些局限性,可能会影响其在 HCC 读级检测中的性能。

方法:我们开发了一种称为无末端修复酶甲基化测序(NEEM-seq)的低 DNA 损伤和高保真度甲基化检测方法。我们进一步开发了一种称为 DeepTrace 的读级神经检测模型,该模型可以通过预先训练和微调神经网络更好地识别来自 HCC 的测序reads。在使用来自 NEEM-seq 的 1100 万reads 进行预训练后,DeepTrace 使用经过降噪处理的来自肿瘤组织 DNA 的 120 万 HCC 衍生reads 和来自非肿瘤 cfDNA 的 270 万非肿瘤reads 进行了微调。我们使用来自 130 名个体的 cfDNA 全基因组 NEEM-seq 数据(深度约为 1.6X)验证了该模型。

结果:NEEM-seq 通过避免在 cfDNA 中引入非甲基化错误,克服了传统酶甲基化测序方法的缺点。DeepTrace 在识别 HCC 衍生 reads 和检测 HCC 个体方面优于其他模型。基于 cfDNA 的全基因组 NEEM-seq 数据,我们的模型在由 62 名 HCC 患者、48 名肝病患者和 20 名健康个体组成的验证队列中表现出 96.2%的高准确率、93.6%的灵敏度和 98.5%的特异性。在 HCC 的早期阶段(BCLC 0/A 和 TNM I),DeepTrace 的灵敏度分别为 89.6%和 89.5%,高于 AFP(在 BCLC 0/A 中灵敏度分别为 50.5%和 TNM I 中灵敏度分别为 44.7%)。

结论:通过将来自 NEEM-seq 的高保真度甲基化数据与 DeepTrace 模型相结合,我们的方法在高灵敏度和特异性方面具有很大的潜力,可用于 HCC 的早期检测,可能适用于临床应用。DeepTrace:https://github.com/Bamrock/DeepTrace。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/10631027/5843f6ff2a23/13073_2023_1238_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/10631027/15fa33a365b5/13073_2023_1238_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/10631027/77f03295be7b/13073_2023_1238_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/10631027/ab8f22ff4d71/13073_2023_1238_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/10631027/a17ec2940f81/13073_2023_1238_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/10631027/9ea6c841860b/13073_2023_1238_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/10631027/67375fa8b324/13073_2023_1238_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/10631027/8430bb43bda2/13073_2023_1238_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/10631027/14f11aeffc9b/13073_2023_1238_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/10631027/5843f6ff2a23/13073_2023_1238_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/10631027/15fa33a365b5/13073_2023_1238_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/10631027/77f03295be7b/13073_2023_1238_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/10631027/ab8f22ff4d71/13073_2023_1238_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/10631027/a17ec2940f81/13073_2023_1238_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/10631027/9ea6c841860b/13073_2023_1238_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/10631027/67375fa8b324/13073_2023_1238_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/10631027/8430bb43bda2/13073_2023_1238_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/10631027/14f11aeffc9b/13073_2023_1238_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/10631027/5843f6ff2a23/13073_2023_1238_Fig9_HTML.jpg

相似文献

[1]
Early detection of hepatocellular carcinoma via no end-repair enzymatic methylation sequencing of cell-free DNA and pre-trained neural network.

Genome Med. 2023-11-8

[2]
Hepatocellular carcinoma detection via targeted enzymatic methyl sequencing of plasma cell-free DNA.

Clin Epigenetics. 2023-1-4

[3]
Cell-free DNA methylation markers for differential diagnosis of hepatocellular carcinoma.

BMC Med. 2022-1-14

[4]
Hypomethylation in HBV integration regions aids non-invasive surveillance to hepatocellular carcinoma by low-pass genome-wide bisulfite sequencing.

BMC Med. 2020-8-3

[5]
Genome-wide discovery and validation of diagnostic DNA methylation-based biomarkers for hepatocellular cancer detection in circulating cell free DNA.

Theranostics. 2019-9-25

[6]
Comprehensive DNA methylation analysis of tissue of origin of plasma cell-free DNA by methylated CpG tandem amplification and sequencing (MCTA-Seq).

Clin Epigenetics. 2019-6-24

[7]
A circulating cell-free DNA methylation signature for the detection of hepatocellular carcinoma.

Mol Cancer. 2023-10-6

[8]
Simultaneous analysis of mutations and methylations in circulating cell-free DNA for hepatocellular carcinoma detection.

Sci Transl Med. 2022-11-23

[9]
Genome-wide mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early detection of hepatocellular carcinoma.

Gut. 2019-7-29

[10]
Genome-Scale Methylation Analysis of Circulating Cell-Free DNA in Gastric Cancer Patients.

Clin Chem. 2022-2-1

引用本文的文献

[1]
Advancements in DNA methylation technologies and their application in cancer diagnosis.

Epigenetics. 2025-12

[2]
DNA methylation in esophageal cancer: technological advances and early detection clinical applications.

Front Oncol. 2025-7-11

[3]
Promises and pitfalls of multi-cancer early detection using liquid biopsy tests.

Nat Rev Clin Oncol. 2025-6-13

[4]
Development of a model combining CEUS LI-RADS and clinical features for predicting glypican-3 expression in hepatocellular carcinoma.

Abdom Radiol (NY). 2025-4-11

[5]
The Current Role of Circulating Cell-Free DNA in the Management of Hepatocellular Carcinoma.

Cancers (Basel). 2025-3-20

[6]
The epigenetic basis of hepatocellular carcinoma - mechanisms and potential directions for biomarkers and therapeutics.

Br J Cancer. 2025-6

[7]
Artificial intelligence: clinical applications and future advancement in gastrointestinal cancers.

Front Artif Intell. 2024-12-20

[8]
Blood biomarkers of hepatocellular carcinoma: a critical review.

Front Cell Dev Biol. 2024-11-22

[9]
Comprehensive review and updated analysis of DNA methylation in hepatocellular carcinoma: From basic research to clinical application.

Clin Transl Med. 2024-11

[10]
Emerging strategies to investigate the biology of early cancer.

Nat Rev Cancer. 2024-12

本文引用的文献

[1]
BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update.

J Hepatol. 2022-3

[2]
Comparison of EM-seq and PBAT methylome library methods for low-input DNA.

Epigenetics. 2022-10

[3]
clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.

Innovation (Camb). 2021-7-1

[4]
A pan-cancer study of spalt-like transcription factors 1/2/3/4 as therapeutic targets.

Arch Biochem Biophys. 2021-10-30

[5]
Integrative, multi-omics, analysis of blood samples improves model predictions: applications to cancer.

BMC Bioinformatics. 2021-8-5

[6]
DISMIR: Deep learning-based noninvasive cancer detection by integrating DNA sequence and methylation information of individual cell-free DNA reads.

Brief Bioinform. 2021-11-5

[7]
Integrative Multi-Omics Approaches in Cancer Research: From Biological Networks to Clinical Subtypes.

Mol Cells. 2021-7-31

[8]
MAPK-RAP1A Signaling Enriched in Hepatocellular Carcinoma Is Associated With Favorable Tumor-Infiltrating Immune Cells and Clinical Prognosis.

Front Oncol. 2021-6-10

[9]
Evaluation of whole-genome DNA methylation sequencing library preparation protocols.

Epigenetics Chromatin. 2021-6-19

[10]
Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA.

Genome Res. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索