Suppr超能文献

一种结合CEUS LI-RADS与临床特征用于预测肝细胞癌中磷脂酰肌醇蛋白聚糖-3表达的模型的开发。

Development of a model combining CEUS LI-RADS and clinical features for predicting glypican-3 expression in hepatocellular carcinoma.

作者信息

Huang Fen, Pang Jinshu, Wu Yuquan, Sun Yueting, Wen Rong, Bai Xiumei, Nong Wanxian, Gao Ruizhi, He Yun, Li Cuiling, Huang Guangliang, Yang Hong

机构信息

Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.

Department of Medical Ultrasound, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-Sen University, Nanning, Guangxi Zhuang Autonomous Region, China.

出版信息

Abdom Radiol (NY). 2025 Apr 11. doi: 10.1007/s00261-025-04861-8.

Abstract

OBJECTIVE

To establish a predictive model incorporating clinical features and contrast-enhanced ultrasound (CEUS) liver Imaging Reporting and Data System (LI-RADS) for predicting glypican-3 (GPC3) expression in hepatocellular carcinoma (HCC).

METHODS

A total of 142 HCC patients between January 2020 to June 2021 in our institution were retrospectively analyzed. All patients underwent CEUS before surgery, and the reference standard was immunohistochemical analysis of surgical specimen. The clinical features, conventional ultrasound features, and CEUS LI-RADS features of patients in the GPC3-positive and GPC3-negative groups were evaluated and compared. The variables screened by multivariable logistic regression were used to develop a model for predicting GPC3 expression and the predictive precision and clinical utility of the model was evaluated using receiver operating characteristic analysis and decision curve analysis.

RESULTS

Among the 142 HCC patients, 96 (67.6%) were classified as LR-4/5 lesions, 46 (32.4%) were classified as LR-M lesions, 101 (71.1%) were GPC3-positive and 41 (28.9%) were negative. Multivariable logistic regression analysis showed that younger age (OR = 0.947; 95% CI: 0.910-0.985; p = 0.007), alpha-fetoprotein > 400 ng/ml (OR = 5.202; 95% CI: 1.808-14.966; p = 0.002) and LI-RADS M (OR = 2.822; 95% CI: 1.101-7.236; p = 0.031) was independent risk factors for GPC3-positive HCC. The model combining clinical features and LI-RADS categories showed better performance than single variable, with AUC of 0.759 (p < 0.05). The nomogram and decision curves revealed substantial clinical benefit of the prediction model in predicting GPC3 expression.

CONCLUSION

The combined model incorporating clinical features and CEUS LI-RADS achieved a satisfactory performance for predicting GPC3 expression in HCC patients.

摘要

目的

建立一个结合临床特征和超声造影(CEUS)肝脏影像报告和数据系统(LI-RADS)的预测模型,用于预测肝细胞癌(HCC)中磷脂酰肌醇蛋白聚糖-3(GPC3)的表达。

方法

回顾性分析2020年1月至2021年6月在我院就诊的142例HCC患者。所有患者在手术前行CEUS检查,参考标准为手术标本的免疫组织化学分析。评估并比较GPC3阳性组和GPC3阴性组患者的临床特征、常规超声特征和CEUS LI-RADS特征。将多变量逻辑回归筛选出的变量用于建立预测GPC3表达的模型,并使用受试者工作特征分析和决策曲线分析评估该模型的预测精度和临床实用性。

结果

在142例HCC患者中,96例(67.6%)被分类为LR-4/5类病变,46例(32.4%)被分类为LR-M类病变,101例(71.1%)GPC3阳性,41例(28.9%)阴性。多变量逻辑回归分析显示,年龄较小(OR = 0.947;95%CI:0.910-0.985;p = 0.007)、甲胎蛋白>400 ng/ml(OR = 5.202;95%CI:1.808-14.966;p = 0.002)和LI-RADS M(OR = 2.822;95%CI:1.101-7.236;p = 0.031)是GPC3阳性HCC的独立危险因素。结合临床特征和LI-RADS分类的模型表现优于单一变量,AUC为0.759(p < 0.05)。列线图和决策曲线显示预测模型在预测GPC3表达方面具有显著的临床益处。

结论

结合临床特征和CEUS LI-RADS的联合模型在预测HCC患者GPC3表达方面表现令人满意。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验