Heo Yong Jin, Hwa Chanwoong, Lee Gang-Hee, Park Jae-Min, An Joon-Yong
School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Korea.
Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Korea.
Mol Cells. 2021 Jul 31;44(7):433-443. doi: 10.14348/molcells.2021.0042.
Multi-omics approaches are novel frameworks that integrate multiple omics datasets generated from the same patients to better understand the molecular and clinical features of cancers. A wide range of emerging omics and multi-view clustering algorithms now provide unprecedented opportunities to further classify cancers into subtypes, improve the survival prediction and therapeutic outcome of these subtypes, and understand key pathophysiological processes through different molecular layers. In this review, we overview the concept and rationale of multi-omics approaches in cancer research. We also introduce recent advances in the development of multi-omics algorithms and integration methods for multiple-layered datasets from cancer patients. Finally, we summarize the latest findings from large-scale multi-omics studies of various cancers and their implications for patient subtyping and drug development.
多组学方法是一种新颖的框架,它整合了来自同一患者的多个组学数据集,以更好地了解癌症的分子和临床特征。现在,各种各样新兴的组学和多视图聚类算法提供了前所未有的机会,可进一步将癌症分类为不同亚型,改善这些亚型的生存预测和治疗效果,并通过不同分子层面了解关键的病理生理过程。在本综述中,我们概述了癌症研究中多组学方法的概念和基本原理。我们还介绍了多组学算法的最新进展以及针对癌症患者多层数据集的整合方法。最后,我们总结了各种癌症大规模多组学研究的最新发现及其对患者亚型分类和药物开发的意义。