Suppr超能文献

基于 JS-ISSA-XGBoost 的生化反应过程在线软测量方法。

An online soft sensor method for biochemical reaction process based on JS-ISSA-XGBoost.

机构信息

School of Electrical and Information Engineering, JiangSu University, ZhenJiang, 212013, JiangSu, China.

出版信息

BMC Biotechnol. 2023 Nov 8;23(1):49. doi: 10.1186/s12896-023-00816-3.

Abstract

BACKGROUND

A method combining offline techniques and the just-in-time learning strategy (JITL) is proposed, because the biochemical reaction process often encounters changing features and parameters over time.

METHODS

Firstly, multiple sub-databases in the fermentation process are constructed offline by an improved fuzzy C-means algorithm and the sample data are adaptively pruned by a similarity query threshold. Secondly, an improved eXtreme Gradient Boosting (XGBoost) method is used on the online modeling stage to build soft sensor models, and the multi-similarity-driven just-in-time learning strategy is used to increase the diversity of the model. Finally, to improve the generalization of the whole algorithm, the output of the base learner is fused by an improved Stacking integration model and then the predictive output is performed.

RESULTS

Applying the constructed soft sensor model to the problem of predicting cell concentration and product concentration in Pichia pastoris fermentation process. The experimental results show that the root mean square error of the cell concentration is 0.0260, the coefficient of determination is 0.9945, the root mean square error of the product concentration is 2.6688, and the coefficient of determination is 0.9970. It shows that the proposed method has the advantages of timely prediction and high prediction accuracy, which validates the effectiveness and practicality of the method.

CONCLUSION

The JS-ISSA-XGBoost is an extensive and excellent soft measurement model that meets the practical needs for real-time monitoring of parameters and prediction of control in biochemical reactions.

摘要

背景

提出了一种结合离线技术和即时学习策略(JITL)的方法,因为生化反应过程通常会随着时间的推移而遇到特征和参数的变化。

方法

首先,通过改进的模糊 C 均值算法在线下构建发酵过程中的多个子数据库,并通过相似度查询阈值自适应地修剪样本数据。其次,在线建模阶段采用改进的极端梯度提升(XGBoost)方法构建软传感器模型,并采用多相似度驱动的即时学习策略来增加模型的多样性。最后,为了提高整个算法的泛化能力,通过改进的堆叠集成模型融合基学习器的输出,然后进行预测输出。

结果

将构建的软传感器模型应用于毕赤酵母发酵过程中细胞浓度和产物浓度的预测问题。实验结果表明,细胞浓度的均方根误差为 0.0260,决定系数为 0.9945,产物浓度的均方根误差为 2.6688,决定系数为 0.9970。这表明所提出的方法具有及时预测和高预测精度的优点,验证了该方法的有效性和实用性。

结论

JS-ISSA-XGBoost 是一种广泛而优秀的软测量模型,满足了生化反应中实时监测参数和预测控制的实际需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25ca/10634092/aaaa3824fe4e/12896_2023_816_Fig1_HTML.jpg

相似文献

1
An online soft sensor method for biochemical reaction process based on JS-ISSA-XGBoost.
BMC Biotechnol. 2023 Nov 8;23(1):49. doi: 10.1186/s12896-023-00816-3.
2
Development and Optimization of a Novel Soft Sensor Modeling Method for Fermentation Process of .
Sensors (Basel). 2023 Jun 29;23(13):6014. doi: 10.3390/s23136014.
3
Modeling and Optimization of an Enhanced Soft Sensor for the Fermentation Process of .
Sensors (Basel). 2024 May 9;24(10):3017. doi: 10.3390/s24103017.
5
A hybrid XGBoost-ISSA-LSTM model for accurate short-term and long-term dissolved oxygen prediction in ponds.
Environ Sci Pollut Res Int. 2022 Mar;29(12):18142-18159. doi: 10.1007/s11356-021-17020-5. Epub 2021 Oct 22.
6
Soft Sensor Modeling Method Based on Improved KH-RBF Neural Network Bacteria Concentration in Marine Alkaline Protease Fermentation Process.
Appl Biochem Biotechnol. 2022 Oct;194(10):4530-4545. doi: 10.1007/s12010-022-03934-4. Epub 2022 May 4.
7
A soft sensor model of cell concentration based on IBDA-RELM.
Prep Biochem Biotechnol. 2022;52(6):618-626. doi: 10.1080/10826068.2021.1980799. Epub 2021 Oct 20.
9
A dynamic soft senor modeling method based on MW-ELWPLS in marine alkaline protease fermentation process.
Prep Biochem Biotechnol. 2021;51(5):430-439. doi: 10.1080/10826068.2020.1827428. Epub 2020 Oct 5.
10
Soft-sensor modeling for L-lysine fermentation process based on hybrid ICS-MLSSVM.
Sci Rep. 2020 Jul 15;10(1):11630. doi: 10.1038/s41598-020-68081-4.

本文引用的文献

2
Urgent Cardiac Surgery and COVID-19 Infection: Uncharted Territory: Reply.
Ann Thorac Surg. 2021 May;111(5):1735. doi: 10.1016/j.athoracsur.2020.09.007. Epub 2020 Oct 9.
3
A dynamic soft senor modeling method based on MW-ELWPLS in marine alkaline protease fermentation process.
Prep Biochem Biotechnol. 2021;51(5):430-439. doi: 10.1080/10826068.2020.1827428. Epub 2020 Oct 5.
4
Study on soft sensor modeling method for sign of contaminated fermentation broth in Chlortetracycline fermentation process.
Prep Biochem Biotechnol. 2021;51(1):76-85. doi: 10.1080/10826068.2020.1793173. Epub 2020 Sep 29.
5
Soft-sensor modeling for L-lysine fermentation process based on hybrid ICS-MLSSVM.
Sci Rep. 2020 Jul 15;10(1):11630. doi: 10.1038/s41598-020-68081-4.
7
Estimating mutual information.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066138. doi: 10.1103/PhysRevE.69.066138. Epub 2004 Jun 23.
8
Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris.
Curr Opin Biotechnol. 2002 Aug;13(4):329-32. doi: 10.1016/s0958-1669(02)00330-0.
9
Communication theory of secrecy systems. 1945.
MD Comput. 1998 Jan-Feb;15(1):57-64.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验