Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA.
Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA.
Autophagy. 2024 Apr;20(4):792-808. doi: 10.1080/15548627.2023.2269028. Epub 2023 Nov 9.
Autophagosomes fuse with lysosomes, forming autolysosomes that degrade engulfed cargo. To maintain lysosomal capacity, autophagic lysosome reformation (ALR) must regenerate lysosomes from autolysosomes using a membrane tubule-based process. Maintaining lysosomal capacity is required to maintain cellular health, especially in neurons where lysosomal dysfunction has been repeatedly implicated in neurodegenerative disease. The DNA-J domain HSC70 co-chaperone RME-8/DNAJC13 has been linked to endosomal coat protein regulation and to neurological disease. We report new analysis of the requirements for the RME-8/DNAJC13 protein in neurons, focusing on intact mechanosensory neurons, and primary mouse cortical neurons in culture. Loss of RME-8/DNAJC13 in both systems results in accumulation of grossly elongated autolysosomal tubules. Further analysis revealed a similar autolysosome tubule accumulation defect in mutants known to be required for ALR in mammals, including mutants lacking and that regulate the class III phosphatidylinositol 3-kinase (PtdIns3K) VPS-34, and / that severs ALR tubules. Clathrin is also an important ALR regulator implicated in autolysosome tubule formation and release. In we found that loss of RME-8 causes severe depletion of clathrin from neuronal autolysosomes, a phenotype shared with and mutants. We conclude that RME-8/DNAJC13 plays a previously unrecognized role in ALR, likely affecting autolysosome tubule severing. Additionally, in both systems, loss of RME-8/DNAJC13 reduced macroautophagic/autophagic flux, suggesting feedback regulation from ALR to autophagy. Our results connecting RME-8/DNAJC13 to ALR and autophagy provide a potential mechanism by which RME-8/DNAJC13 could influence neuronal health and the progression of neurodegenerative disease. ALR, autophagic lysosome reformation; ATG-13/EPG-1, AuTophaGy (yeast Atg homolog)-13; ATG-18, AuTophaGy (yeast Atg homolog)-18; AV, autophagic vacuole; CLIC-1, Clathrin Light Chain-1; EPG-3, Ectopic P Granules-3; EPG-6, Ectopic P Granules-6; LGG-1, LC3, GABARAP and GATE-16 family-1; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; PD, Parkinson disease; PtdIns3P, phosphatidylinositol-3-phosphate; PtdIns(4,5)P, phosphatidylinositol-4,5-bisphosphate; RME-8, Receptor Mediated Endocytosis-8; SNX-1, Sorting NeXin-1; VPS-34, related to yeast Vacuolar Protein Sorting factor-34.
自噬体与溶酶体融合,形成自噬溶酶体,降解吞噬的货物。为了维持溶酶体的容量,自噬溶酶体的再形成(ALR)必须利用基于膜小管的过程从自噬溶酶体中再生溶酶体。维持溶酶体的容量对于维持细胞健康是必要的,特别是在神经元中,溶酶体功能障碍已被反复牵连到神经退行性疾病中。DNA-J 结构域 HSC70 共伴侣 RME-8/DNAJC13 与内体包被蛋白的调节以及神经疾病有关。我们报告了对 RME-8/DNAJC13 蛋白在神经元中的新分析,重点是完整的机械敏感神经元,以及原代培养的小鼠皮质神经元。在这两个系统中,RME-8/DNAJC13 的缺失都会导致自噬溶酶体的粗长管的积累。进一步的分析显示,在哺乳动物中,包括调节 III 类磷脂酰肌醇 3-激酶(PtdIns3K)VPS-34 的 和 以及切割 ALR 小管的 和 的突变体中,也存在类似的自噬溶酶体小管积累缺陷。网格蛋白也是一个重要的 ALR 调节剂,参与自噬溶酶体小管的形成和释放。在 中,我们发现 RME-8 的缺失导致神经元自噬溶酶体中的网格蛋白严重耗尽,这与 和 突变体的表型相同。我们得出结论,RME-8/DNAJC13 在 ALR 中发挥了以前未被认识到的作用,可能影响自噬溶酶体的切割。此外,在这两个系统中,RME-8/DNAJC13 的缺失都会降低巨自噬/自噬的通量,这表明从 ALR 到自噬的反馈调节。我们将 RME-8/DNAJC13 与 ALR 和自噬联系起来的结果为 RME-8/DNAJC13 影响神经元健康和神经退行性疾病进展的潜在机制提供了一个可能的机制。ALR,自噬溶酶体再形成;ATG-13/EPG-1,自噬酵母 Atg 同源物-13;ATG-18,自噬酵母 Atg 同源物-18;AV,自噬泡;CLIC-1,网格蛋白轻链 1;EPG-3,异位 P 颗粒-3;EPG-6,异位 P 颗粒-6;LGG-1,LC3、GABARAP 和 GATE-16 家族-1;MAP1LC3/LC3,微管相关蛋白 1 轻链 3;PD,帕金森病;PtdIns3P,磷脂酰肌醇-3-磷酸;PtdIns(4,5)P,磷脂酰肌醇-4,5-双磷酸;RME-8,受体介导的内吞作用-8;SNX-1,分选连接蛋白-1;VPS-34,与酵母液泡蛋白分选因子-34 相关。