Suppr超能文献

在工作记忆中学习环境先验的有效表示。

Learning efficient representations of environmental priors in working memory.

机构信息

Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado, United States of America.

Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado, United States of America.

出版信息

PLoS Comput Biol. 2023 Nov 9;19(11):e1011622. doi: 10.1371/journal.pcbi.1011622. eCollection 2023 Nov.

Abstract

Experience shapes our expectations and helps us learn the structure of the environment. Inference models render such learning as a gradual refinement of the observer's estimate of the environmental prior. For instance, when retaining an estimate of an object's features in working memory, learned priors may bias the estimate in the direction of common feature values. Humans display such biases when retaining color estimates on short time intervals. We propose that these systematic biases emerge from modulation of synaptic connectivity in a neural circuit based on the experienced stimulus history, shaping the persistent and collective neural activity that encodes the stimulus estimate. Resulting neural activity attractors are aligned to common stimulus values. Using recently published human response data from a delayed-estimation task in which stimuli (colors) were drawn from a heterogeneous distribution that did not necessarily correspond with reported population biases, we confirm that most subjects' response distributions are better described by experience-dependent learning models than by models with fixed biases. This work suggests systematic limitations in working memory reflect efficient representations of inferred environmental structure, providing new insights into how humans integrate environmental knowledge into their cognitive strategies.

摘要

经验塑造了我们的期望,并帮助我们了解环境的结构。推理模型将这种学习表现为观察者对环境先验估计的逐渐细化。例如,当在工作记忆中保留对物体特征的估计时,学习到的先验可能会使估计偏向常见特征值的方向。人类在短时间间隔内保留颜色估计时会表现出这种偏差。我们提出,这些系统偏差源于基于经验刺激历史的神经网络回路中突触连接的调制,从而形成编码刺激估计的持久和集体神经活动。由此产生的神经活动吸引子与常见的刺激值对齐。使用最近发表的人类反应数据,我们在一项延迟估计任务中,从一个不均匀的分布中抽取刺激(颜色),该分布不一定与报告的群体偏差相对应,我们确认大多数被试的反应分布比具有固定偏差的模型更能被依赖经验的学习模型描述。这项工作表明,工作记忆中的系统性限制反映了对推断出的环境结构的有效表示,为人类如何将环境知识融入其认知策略提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cab/10662764/ac75d431138d/pcbi.1011622.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验