Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
Department of Chemistry, College of Science, University of Bahrain, P. O. Box 32028, Bahrain.
J Mol Graph Model. 2024 Jan;126:108664. doi: 10.1016/j.jmgm.2023.108664. Epub 2023 Nov 2.
Improving the open circuit voltage is a major challenge for enhancing the overall efficiency of organic solar cells. Current work has concentrated on improving open-circuit voltage by designing new molecular frameworks from an INPIC molecule having a conjugated fused core. We modulated the structure by changing the terminal groups of the reference molecule (INPIC) with seven strong electron-withdrawing units. We investigated various optoelectronic attributes, charge transfer, and photovoltaic and geometrical parameters by compiling the B3LYP/6-31G(d,p) functional of the DFT approach. The optical absorption for modulated molecules ranges from 748.51 nm to 845.96 nm while showing higher oscillation strength than INPIC. At the same time, their impressive charge transport is attributed to their smaller excitation and exciton binding energy, higher electron/hole mobility, narrower band gap, and a more than 99 % intramolecular charge transfer. The larger dipole moments help in the dense interaction of acceptors with employed donor J61 which, in turn, improves charge transfer at the donor-acceptor interface. One of the triumphs that are difficult to get in organic molecules is success in achieving a higher open circuit voltage (V). Our conceptualized molecular frameworks of acceptors are featured with a notable V improvement in the range of 1.84-2.05 eV. Thus, the results of the current investigation pave the root for architecting the acceptor molecules with impressive optoelectrical properties that may be capable of providing high photovoltaic output. Thus these acceptors can be utilized for the development of advanced organic solar cells in future.
提高开路电压是提高有机太阳能电池整体效率的主要挑战。目前的工作集中在通过设计具有共轭融合核的 INPIC 分子的新分子框架来提高开路电压。我们通过用七个强吸电子单元改变参考分子(INPIC)的端基来调节结构。我们通过编译 DFT 方法的 B3LYP/6-31G(d,p) 函数来研究各种光电属性、电荷转移以及光伏和几何参数。调制分子的光学吸收范围从 748.51nm 到 845.96nm,同时表现出比 INPIC 更高的振荡强度。同时,它们令人印象深刻的电荷输运归因于它们更小的激发和激子结合能、更高的电子/空穴迁移率、更窄的能带隙以及超过 99%的分子内电荷转移。较大的偶极矩有助于受体与所采用的供体 J61 的密集相互作用,从而改善了供体-受体界面的电荷转移。在有机分子中很难实现的一个成功是成功地实现了更高的开路电压(V)。我们概念化的受体分子框架具有显著的 V 提高,范围为 1.84-2.05eV。因此,当前研究的结果为设计具有令人印象深刻的光电性能的受体分子奠定了基础,这些受体分子可能有能力提供高光伏输出。因此,这些受体可以在未来用于开发先进的有机太阳能电池。