Suppr超能文献

可疑非肿块样强化病变的再分类(BI-RADS-MRI 分类 4 类)。

Subcategorization of suspicious non-mass-like enhancement lesions(BI-RADS-MRI Category4).

机构信息

Department of Radiology, The Eighth People's Hospital of Jinan, No. 68, Xinxing Road, Gangcheng District of Jinan, Jinan, Shandong, 271126, P. R. China.

出版信息

BMC Med Imaging. 2023 Nov 10;23(1):182. doi: 10.1186/s12880-023-01144-w.

Abstract

BACKGROUND

This study aims to providing a reliable method that has good compliance and is easy to master to improve the accuracy of NMLE diagnosis.

METHODS

This study retrospectively analyzed 122 cases of breast non-mass-like enhancement (NMLE) lesions confirmed by postoperative histology. MRI features and clinical features of benign and malignant non-mass enhancement breast lesions were compared by using independent sample t test, χtest and Fisher exact test. P < 0.05 was considered statistically significant. Statistically significant parameters were then included in logistic regression analysis to build a multiparameter differential diagnosis modelto subdivide the BI-RADS Category 4.

RESULTS

The distribution (odds ratio (OR) = 8.70), internal enhancement pattern (OR = 6.29), ADC value (OR = 5.56), and vascular sign (OR = 2.84) of the lesions were closely related to the benignity and malignancy of the lesions. These signs were used to build the MRI multiparameter model for differentiating benign and malignant non-mass enhancement breast lesions. ROC analysis revealed that its optimal diagnostic cut-off value was 5. The diagnostic specificity and sensitivity were 87.01% and 82.22%, respectively. Lesions with 1-6 points were considered BI-RADS category 4 lesions, and the positive predictive values of subtypes 4a, 4b, and 4c lesions were15.79%, 31.25%, and 77.78%, respectively.

CONCLUSIONS

Comprehensively analyzing the features of MRI of non-mass enhancement breast lesions and building the multiparameter differential diagnosis model could improve the differential diagnostic performance of benign and malignant lesions.

摘要

背景

本研究旨在提供一种依从性好、易于掌握的可靠方法,以提高 NMLE 诊断的准确性。

方法

本研究回顾性分析了 122 例经术后组织学证实的乳腺非肿块样强化(NMLE)病变。采用独立样本 t 检验、χ2 检验和 Fisher 确切概率法比较良性和恶性非肿块强化乳腺病变的 MRI 特征和临床特征。P<0.05 为差异有统计学意义。将有统计学意义的参数纳入 logistic 回归分析,建立多参数鉴别诊断模型,对 BI-RADS 4 类进行细分。

结果

病变的分布(优势比(OR)=8.70)、内部强化模式(OR=6.29)、ADC 值(OR=5.56)和血管征象(OR=2.84)与病变的良恶性密切相关。这些征象被用于建立 MRI 多参数模型,以区分良性和恶性非肿块强化乳腺病变。ROC 分析显示其最佳诊断截断值为 5。诊断的特异性和敏感性分别为 87.01%和 82.22%。病变得分为 1-6 分者被认为是 BI-RADS 4 类病变,亚型 4a、4b 和 4c 病变的阳性预测值分别为 15.79%、31.25%和 77.78%。

结论

综合分析非肿块强化乳腺病变的 MRI 特征并建立多参数鉴别诊断模型,可提高良恶性病变的鉴别诊断性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cfa/10636905/c646aa11a409/12880_2023_1144_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验