Suppr超能文献

基于深度学习的单细胞 RNA 测序数据分析的特征选择评估。

Evaluation of deep learning-based feature selection for single-cell RNA sequencing data analysis.

机构信息

Computational Systems Biology Unit, Faculty of Medicine and Health, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia.

School of Mathematics and Statistics, Faculty of Science, University of Sydney, Camperdown, NSW, 2006, Australia.

出版信息

Genome Biol. 2023 Nov 10;24(1):259. doi: 10.1186/s13059-023-03100-x.

Abstract

BACKGROUND

Feature selection is an essential task in single-cell RNA-seq (scRNA-seq) data analysis and can be critical for gene dimension reduction and downstream analyses, such as gene marker identification and cell type classification. Most popular methods for feature selection from scRNA-seq data are based on the concept of differential distribution wherein a statistical model is used to detect changes in gene expression among cell types. Recent development of deep learning-based feature selection methods provides an alternative approach compared to traditional differential distribution-based methods in that the importance of a gene is determined by neural networks.

RESULTS

In this work, we explore the utility of various deep learning-based feature selection methods for scRNA-seq data analysis. We sample from Tabula Muris and Tabula Sapiens atlases to create scRNA-seq datasets with a range of data properties and evaluate the performance of traditional and deep learning-based feature selection methods for cell type classification, feature selection reproducibility and diversity, and computational time.

CONCLUSIONS

Our study provides a reference for future development and application of deep learning-based feature selection methods for single-cell omics data analyses.

摘要

背景

特征选择是单细胞 RNA 测序(scRNA-seq)数据分析中的一项基本任务,对于基因降维和下游分析(如基因标记识别和细胞类型分类)至关重要。大多数用于 scRNA-seq 数据特征选择的流行方法基于差异分布的概念,其中使用统计模型来检测细胞类型之间的基因表达变化。与传统的基于差异分布的方法相比,基于深度学习的特征选择方法的最新发展提供了一种替代方法,因为基因的重要性是由神经网络确定的。

结果

在这项工作中,我们探索了各种基于深度学习的特征选择方法在 scRNA-seq 数据分析中的应用。我们从 Tabula Muris 和 Tabula Sapiens 图谱中采样,创建了具有一系列数据特性的 scRNA-seq 数据集,并评估了传统和基于深度学习的特征选择方法在细胞类型分类、特征选择可重复性和多样性以及计算时间方面的性能。

结论

我们的研究为基于深度学习的特征选择方法在单细胞组学数据分析中的未来发展和应用提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c827/10638755/50a14e414f10/13059_2023_3100_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验