Suppr超能文献

多模态单细胞组学的 Matilda 多任务学习。

Multi-task learning from multimodal single-cell omics with Matilda.

机构信息

Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia.

School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia.

出版信息

Nucleic Acids Res. 2023 May 8;51(8):e45. doi: 10.1093/nar/gkad157.

Abstract

Multimodal single-cell omics technologies enable multiple molecular programs to be simultaneously profiled at a global scale in individual cells, creating opportunities to study biological systems at a resolution that was previously inaccessible. However, the analysis of multimodal single-cell omics data is challenging due to the lack of methods that can integrate across multiple data modalities generated from such technologies. Here, we present Matilda, a multi-task learning method for integrative analysis of multimodal single-cell omics data. By leveraging the interrelationship among tasks, Matilda learns to perform data simulation, dimension reduction, cell type classification, and feature selection in a single unified framework. We compare Matilda with other state-of-the-art methods on datasets generated from some of the most popular multimodal single-cell omics technologies. Our results demonstrate the utility of Matilda for addressing multiple key tasks on integrative multimodal single-cell omics data analysis. Matilda is implemented in Pytorch and is freely available from https://github.com/PYangLab/Matilda.

摘要

多模态单细胞组学技术能够在单个细胞中以全局规模同时对多个分子程序进行分析,为在以前无法达到的分辨率研究生物系统提供了机会。然而,由于缺乏可以整合来自这些技术的多种数据模式的方法,多模态单细胞组学数据的分析具有挑战性。在这里,我们提出了 Matilda,这是一种用于多模态单细胞组学数据综合分析的多任务学习方法。通过利用任务之间的相互关系,Matilda 学会在单个统一框架中执行数据模拟、降维、细胞类型分类和特征选择。我们将 Matilda 与其他最先进的方法在一些最流行的多模态单细胞组学技术生成的数据集上进行了比较。我们的结果表明,Matilda 可用于解决综合多模态单细胞组学数据分析中的多个关键任务。Matilda 是在 Pytorch 中实现的,可以从 https://github.com/PYangLab/Matilda 免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e3/10164589/f17017677479/gkad157fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验