Suppr超能文献

基于临床T1加权磁共振成像预测脑龄的可行性。

Feasibility of brain age predictions from clinical T1-weighted MRIs.

作者信息

Valdes-Hernandez Pedro A, Laffitte Nodarse Chavier, Cole James H, Cruz-Almeida Yenisel

机构信息

Department of Community Dentistry and Behavioral Science, University of Florida, USA; Pain Research and Intervention Center of Excellence, University of Florida, USA; Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, USA.

Centre for Medical Image Computing, Department of Computer Science, University College London, UK; Dementia Research Centre, Queen Square Institute of Neurology, University College London, UK.

出版信息

Brain Res Bull. 2023 Dec;205:110811. doi: 10.1016/j.brainresbull.2023.110811. Epub 2023 Nov 10.

Abstract

An individual's brain predicted age minus chronological age (brain-PAD) obtained from MRIs could become a biomarker of disease in research studies. However, brain age reports from clinical MRIs are scant despite the rich clinical information hospitals provide. Since clinical MRI protocols are meant for specific clinical purposes, performance of brain age predictions on clinical data need to be tested. We explored the feasibility of using DeepBrainNet, a deep network previously trained on research-oriented MRIs, to predict the brain ages of 840 patients who visited 15 facilities of a health system in Florida. Anticipating a strong prediction bias in our clinical sample, we characterized it to propose a covariate model in group-level regressions of brain-PAD (recommended to avoid Type I, II errors), and tested its generalizability, a requirement for meaningful brain age predictions in new single clinical cases. The best bias-related covariate model was scanner-independent and linear in age, while the best method to estimate bias-free brain ages was the inverse of a scanner-independent and quadratic in brain age function. We demonstrated the feasibility to detect sex-related differences in brain-PAD using group-level regression accounting for the selected covariate model. These differences were preserved after bias correction. The Mean-Average Error (MAE) of the predictions in independent data was ∼8 years, 2-3 years greater than reports for research-oriented MRIs using DeepBrainNet, whereas an R (assuming no bias) was 0.33 and 0.76 for the uncorrected and corrected brain ages, respectively. DeepBrainNet on clinical populations seems feasible, but more accurate algorithms or transfer-learning retraining is needed.

摘要

从磁共振成像(MRI)获得的个体脑预测年龄减去实际年龄(脑-PAD),在研究中可能成为疾病的生物标志物。然而,尽管医院提供了丰富的临床信息,但临床MRI的脑年龄报告却很少。由于临床MRI方案是针对特定临床目的设计的,因此需要测试基于临床数据的脑年龄预测性能。我们探索了使用DeepBrainNet(一个先前在面向研究的MRI上训练的深度网络)来预测佛罗里达州一个医疗系统15个机构中840名患者脑年龄的可行性。鉴于我们的临床样本中可能存在强烈的预测偏差,我们对其进行了特征分析,以便在脑-PAD的组水平回归中提出一个协变量模型(建议避免I型、II型错误),并测试其可推广性,这是在新的单一临床病例中进行有意义的脑年龄预测的必要条件。最佳的偏差相关协变量模型与扫描仪无关且在年龄上呈线性,而估计无偏差脑年龄的最佳方法是一个与扫描仪无关且在脑年龄函数上呈二次函数的倒数。我们证明了使用考虑所选协变量模型的组水平回归来检测脑-PAD中性别相关差异的可行性。这些差异在偏差校正后得以保留。独立数据预测的平均绝对误差(MAE)约为8岁,比使用DeepBrainNet的面向研究的MRI报告大2 - 3岁,而未校正和校正后的脑年龄的R值(假设无偏差)分别为0.33和0.76。在临床人群中使用DeepBrainNet似乎是可行的,但需要更精确的算法或迁移学习再训练。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验