Valdes-Hernandez Pedro, Nodarse Chavier Laffitte, Peraza Julio, Cole James, Cruz-Almeida Yenisel
University of Florida.
Florida International University.
Res Sq. 2023 Aug 11:rs.3.rs-3229072. doi: 10.21203/rs.3.rs-3229072/v1.
The predicted brain age minus the chronological age ('brain-PAD') could become a clinical biomarker. However, most brain age methods were developed to use research-grade high-resolution T1-weighted MRIs, limiting their applicability to clinical-grade MRIs from multiple protocols. To overcome this, we adopted a double transfer learning approach to develop a brain age model agnostic to modality, resolution, or slice orientation. Using 6,224 clinical MRIs among 7 modalities, scanned from 1,540 patients using 8 scanners among 15 + facilities of the University of Florida's Health System, we retrained a convolutional neural network (CNN) to predict brain age from synthetic research-grade magnetization-prepared rapid gradient-echo MRIs (MPRAGEs) generated by a deep learning-trained 'super-resolution' method. We also modeled the "regression dilution bias", a typical overestimation of younger ages and underestimation of older ages, which correction is paramount for personalized brain age-based biomarkers. This bias was independent of modality or scanner and generalizable to new samples, allowing us to add a bias-correction layer to the CNN. The mean absolute error in test samples was 4.67-6.47 years across modalities, with similar accuracy between original MPRAGEs and their synthetic counterparts. Brain-PAD was also reliable across modalities. We demonstrate the feasibility of clinical-grade brain age predictions, contributing to personalized medicine.
预测的脑龄减去实际年龄(“脑龄预测年龄差”)可能会成为一种临床生物标志物。然而,大多数脑龄计算方法是为使用研究级高分辨率T1加权磁共振成像(MRI)而开发的,这限制了它们在多种协议下临床级MRI中的适用性。为了克服这一问题,我们采用了双重迁移学习方法来开发一种与模态、分辨率或切片方向无关的脑龄模型。我们使用了佛罗里达大学健康系统15多个机构中的8台扫描仪,对1540名患者进行扫描,获取了7种模态下的6224份临床MRI数据,通过深度学习训练的“超分辨率”方法生成合成研究级磁化准备快速梯度回波MRI(MPRAGE),对卷积神经网络(CNN)进行重新训练,以预测脑龄。我们还对“回归稀释偏差”进行了建模,这是一种典型的对年轻年龄的高估和对老年年龄的低估,对于基于个性化脑龄的生物标志物而言,纠正这种偏差至关重要。这种偏差与模态或扫描仪无关,并且可以推广到新样本,这使我们能够在CNN中添加一个偏差校正层。跨模态测试样本中的平均绝对误差为4.67 - 6.47岁,原始MPRAGE与其合成对应物之间的准确性相似。脑龄预测年龄差在各模态中也具有可靠性。我们证明了临床级脑龄预测的可行性,这有助于个性化医疗。