Department of Community Dentistry and Behavioral Science, University of Florida, 1329 SW 16th Street, Ste. 5180, Gainesville, FL, 32610, USA.
Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA.
Sci Rep. 2023 Nov 10;13(1):19570. doi: 10.1038/s41598-023-47021-y.
The difference between the estimated brain age and the chronological age ('brain-PAD') could become a clinical biomarker. However, most brain age models were developed for research-grade high-resolution T1-weighted MRIs, limiting their applicability to clinical-grade MRIs from various protocols. We adopted a dual-transfer learning strategy to develop a model agnostic to modality, resolution, or slice orientation. We retrained a convolutional neural network (CNN) using 6281 clinical MRIs from 1559 patients, among 7 modalities and 8 scanner models. The CNN was trained to estimate brain age from synthetic research-grade magnetization-prepared rapid gradient-echo MRIs (MPRAGEs) generated by a 'super-resolution' method. The model failed with T2-weighted Gradient-Echo MRIs. The mean absolute error (MAE) was 5.86-8.59 years across the other modalities, still higher than for research-grade MRIs, but comparable between actual and synthetic MPRAGEs for some modalities. We modeled the "regression bias" in brain age, for its correction is crucial for providing unbiased summary statistics of brain age or for personalized brain age-based biomarkers. The bias model was generalizable as its correction eliminated any correlation between brain-PAD and chronological age in new samples. Brain-PAD was reliable across modalities. We demonstrate the feasibility of brain age predictions from arbitrary clinical-grade MRIs, thereby contributing to personalized medicine.
估计脑龄与实际年龄(“脑龄-PAD”)之间的差异可能成为一种临床生物标志物。然而,大多数脑龄模型是为研究级高分辨率 T1 加权 MRI 开发的,限制了它们在来自不同协议的临床级 MRI 中的适用性。我们采用了双重迁移学习策略来开发一种与模态、分辨率或切片方向无关的模型。我们使用来自 1559 名患者的 6281 例临床 MRI 重新训练了一个卷积神经网络(CNN),涉及 7 种模态和 8 种扫描仪型号。该 CNN 经过训练,可以根据一种“超分辨率”方法生成的合成研究级磁化准备快速梯度回波 MRI(MPRAGE)来估计脑龄。该模型在 T2 加权梯度回波 MRI 上失败。其他模态的平均绝对误差(MAE)为 5.86-8.59 岁,虽然仍高于研究级 MRI,但对于某些模态的实际和合成 MPRAGE 之间的 MAE 相当。我们对脑龄的“回归偏差”进行建模,因为对其进行校正对于提供脑龄的无偏汇总统计信息或用于个性化脑龄为基础的生物标志物至关重要。偏差模型具有通用性,因为其校正消除了新样本中脑龄-PAD 与实际年龄之间的任何相关性。脑龄-PAD 在各种模态下均可靠。我们证明了从任意临床级 MRI 进行脑龄预测的可行性,从而为个性化医疗做出了贡献。