Suppr超能文献

Dex-Benchmark:用于评估转录组数据分析算法的数据集和代码。

Dex-Benchmark: datasets and code to evaluate algorithms for transcriptomics data analysis.

机构信息

Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

PeerJ. 2023 Nov 8;11:e16351. doi: 10.7717/peerj.16351. eCollection 2023.

Abstract

Many tools and algorithms are available for analyzing transcriptomics data. These include algorithms for performing sequence alignment, data normalization and imputation, clustering, identifying differentially expressed genes, and performing gene set enrichment analysis. To make the best choice about which tools to use, objective benchmarks can be developed to compare the quality of different algorithms to extract biological knowledge maximally and accurately from these data. The Dexamethasone Benchmark (Dex-Benchmark) resource aims to fill this need by providing the community with datasets and code templates for benchmarking different gene expression analysis tools and algorithms. The resource provides access to a collection of curated RNA-seq, L1000, and ChIP-seq data from dexamethasone treatment as well as genetic perturbations of its known targets. In addition, the website provides Jupyter Notebooks that use these pre-processed curated datasets to demonstrate how to benchmark the different steps in gene expression analysis. By comparing two independent data sources and data types with some expected concordance, we can assess which tools and algorithms best recover such associations. To demonstrate the usefulness of the resource for discovering novel drug targets, we applied it to optimize data processing strategies for the chemical perturbations and CRISPR single gene knockouts from the L1000 transcriptomics data from the Library of Integrated Network Cellular Signatures (LINCS) program, with a focus on understudied proteins from the Illuminating the Druggable Genome (IDG) program. Overall, the Dex-Benchmark resource can be utilized to assess the quality of transcriptomics and other related bioinformatics data analysis workflows. The resource is available from: https://maayanlab.github.io/dex-benchmark.

摘要

许多工具和算法可用于分析转录组学数据。这些算法包括执行序列比对、数据标准化和插补、聚类、识别差异表达基因以及进行基因集富集分析。为了做出使用哪些工具的最佳选择,可以开发客观的基准来比较不同算法从这些数据中提取最大和最准确的生物学知识的质量。Dexamethasone 基准(Dex-Benchmark)资源旨在通过为社区提供基准测试不同基因表达分析工具和算法的数据集和代码模板来满足这一需求。该资源提供了一组经过策展的 RNA-seq、L1000 和 ChIP-seq 数据集,这些数据集来自地塞米松处理以及其已知靶标的遗传扰动。此外,该网站还提供了使用这些预处理过的策展数据集的 Jupyter 笔记本,以演示如何基准测试基因表达分析的不同步骤。通过比较两个独立的数据源和具有一些预期一致性的数据类型,我们可以评估哪些工具和算法最能恢复这些关联。为了展示该资源在发现新的药物靶点方面的有用性,我们将其应用于优化化学扰动和 CRISPR 单基因敲除的 L1000 转录组学数据的处理策略,重点关注来自 Illuminating the Druggable Genome (IDG) 计划的研究较少的蛋白质。总体而言,Dex-Benchmark 资源可用于评估转录组学和其他相关生物信息学数据分析工作流程的质量。该资源可从以下网址获取:https://maayanlab.github.io/dex-benchmark。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d231/10638921/54e0121a46aa/peerj-11-16351-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验