Suppr超能文献

利用梭菌将木质纤维素生物质用于丁醇生产以实现可持续废物管理:最新进展与展望

Harnessing lignocellulosic biomass for butanol production through clostridia for sustainable waste management: recent advances and perspectives.

作者信息

Palaniswamy Sampathkumar, Ashoor Selim, Eskasalam Syafira Rizqi, Jang Yu-Sin

机构信息

Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea.

Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.

出版信息

Front Bioeng Biotechnol. 2023 Oct 25;11:1272429. doi: 10.3389/fbioe.2023.1272429. eCollection 2023.

Abstract

The escalating waste generation rates, driven by population growth, urbanization, and consumption patterns, have made waste management a critical global concern with significant environmental, social, and economic repercussions. Among the various waste sources, lignocellulosic biomass represents a significant proportion of agricultural, agro-industrial, and municipal wastes. Biofuels are gaining attention as a promising substitute to fossil fuels, and butanol is one such biofuel that has been identified as a potential candidate due to its compatibility with existing fuel infrastructure, lower volatility, and higher energy density. Sustainable management of lignocellulosic biomass waste and its utilization in fermentation are viable alternatives to produce butanol via the promising microbial catalyst clostridia. This review provides an overview of lignocellulosic biomass waste management, focusing on recent advances in strain development for butanol production from renewable biomass with an emphasis on future perspectives.

摘要

由人口增长、城市化和消费模式驱动的废物产生率不断上升,使得废物管理成为一个关键的全球问题,具有重大的环境、社会和经济影响。在各种废物来源中,木质纤维素生物质占农业、农工业和城市废物的很大比例。生物燃料作为化石燃料的一种有前景的替代品正受到关注,丁醇就是这样一种生物燃料,由于其与现有燃料基础设施的兼容性、较低的挥发性和较高的能量密度,已被确定为潜在候选物。木质纤维素生物质废物的可持续管理及其在发酵中的利用是通过有前景的微生物催化剂梭菌生产丁醇的可行替代方案。本综述概述了木质纤维素生物质废物管理,重点关注利用可再生生物质生产丁醇的菌株开发的最新进展,并强调了未来展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144b/10634440/958f977d1478/fbioe-11-1272429-g001.jpg

相似文献

1
Harnessing lignocellulosic biomass for butanol production through clostridia for sustainable waste management: recent advances and perspectives.
Front Bioeng Biotechnol. 2023 Oct 25;11:1272429. doi: 10.3389/fbioe.2023.1272429. eCollection 2023.
2
Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future.
Protein Pept Lett. 2018;25(2):148-163. doi: 10.2174/0929866525666180122144504.
3
Valorization of agricultural wastes for biofuel applications.
Heliyon. 2022 Oct 18;8(10):e11117. doi: 10.1016/j.heliyon.2022.e11117. eCollection 2022 Oct.
4
A mini review on renewable sources for biofuel.
Bioresour Technol. 2014 Oct;169:742-749. doi: 10.1016/j.biortech.2014.07.022. Epub 2014 Jul 11.
5
Clostridium as microbial cell factory to enable the sustainable utilization of three generations of feedstocks.
Bioresour Technol. 2022 Oct;361:127656. doi: 10.1016/j.biortech.2022.127656. Epub 2022 Jul 21.
6
Pretreatment and hydrolysis of lignocellulosic wastes for butanol production: Challenges and perspectives.
Bioresour Technol. 2018 Dec;270:702-721. doi: 10.1016/j.biortech.2018.08.117. Epub 2018 Aug 31.
7
Production of butanol from biomass: recent advances and future prospects.
Environ Sci Pollut Res Int. 2019 Jul;26(20):20164-20182. doi: 10.1007/s11356-019-05437-y. Epub 2019 May 21.
8
Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions.
Molecules. 2022 Dec 9;27(24):8717. doi: 10.3390/molecules27248717.
10
Butanol production from renewable biomass by clostridia.
Bioresour Technol. 2012 Nov;123:653-63. doi: 10.1016/j.biortech.2012.07.104. Epub 2012 Aug 7.

引用本文的文献

1
From pre-culture to solvent: current trends in Clostridium acetobutylicum cultivation.
Appl Microbiol Biotechnol. 2025 Feb 18;109(1):47. doi: 10.1007/s00253-025-13428-y.
2
Biobutanol production from underutilized substrates using : Unlocking untapped potential for sustainable energy development.
Curr Res Microb Sci. 2024 Jun 8;7:100250. doi: 10.1016/j.crmicr.2024.100250. eCollection 2024.

本文引用的文献

2
Clostridium as microbial cell factory to enable the sustainable utilization of three generations of feedstocks.
Bioresour Technol. 2022 Oct;361:127656. doi: 10.1016/j.biortech.2022.127656. Epub 2022 Jul 21.
3
An updated review on advancement in fermentative production strategies for biobutanol using Clostridium spp.
Environ Sci Pollut Res Int. 2022 Jul;29(32):47988-48019. doi: 10.1007/s11356-022-20637-9. Epub 2022 May 13.
4
Biomass: Renewable carbon resource for chemical and energy industry.
Innovation (Camb). 2021 Nov 9;3(1):100184. doi: 10.1016/j.xinn.2021.100184. eCollection 2022 Jan 25.
5
Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: Paving a path towards circular economy.
Bioresour Technol. 2022 Jan;343:126151. doi: 10.1016/j.biortech.2021.126151. Epub 2021 Oct 18.
6
Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: Opportunities and challenges.
Bioresour Technol. 2022 Jan;343:126065. doi: 10.1016/j.biortech.2021.126065. Epub 2021 Oct 5.
7
Consolidated bioprocessing performance of a two-species microbial consortium for butanol production from lignocellulosic biomass.
Biotechnol Bioeng. 2020 Oct;117(10):2985-2995. doi: 10.1002/bit.27464. Epub 2020 Jul 1.
8
Recent advances in n-butanol and butyrate production using engineered Clostridium tyrobutyricum.
World J Microbiol Biotechnol. 2020 Aug 14;36(9):138. doi: 10.1007/s11274-020-02914-2.
9
Valorization of agricultural waste for biogas based circular economy in India: A research outlook.
Bioresour Technol. 2020 May;304:123036. doi: 10.1016/j.biortech.2020.123036. Epub 2020 Feb 19.
10
Metabolic Engineering of to Improve Butanol Production by Consolidated Bioprocessing.
ACS Synth Biol. 2020 Feb 21;9(2):304-315. doi: 10.1021/acssynbio.9b00331. Epub 2020 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验