Nejatie Ali, Yee Samantha S, Jeter Anna, Saragovi Horacio Uri
Center for Translational Research, Lady Davis Research Institute-Jewish General Hospital, Montreal, QC, Canada.
Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
Front Oncol. 2023 Oct 26;13:1261090. doi: 10.3389/fonc.2023.1261090. eCollection 2023.
One unexploited family of cancer biomarkers comprise glycoproteins, carbohydrates, and glycolipids (the Tumor Glycocode).A class of glycolipid cancer biomarkers, the tumor-marker gangliosides (TMGs) are presented here as potential diagnostics for detecting cancer, especially at early stages, as the biological function of TMGs makes them etiological. We propose that a quantitative matrix of the Cancer Biomarker Glycocode and artificial intelligence-driven algorithms will expand the menu of validated cancer biomarkers as a step to resolve some of the challenges in cancer diagnosis, and yield a combination that can identify a specific cancer, in a tissue-agnostic manner especially at early stages, to enable early intervention. Diagnosis is critical to reducing cancer mortality but many cancers lack efficient and effective diagnostic tests, especially for early stage disease. Ideal diagnostic biomarkers are etiological, samples are preferably obtained via non-invasive methods (e.g. liquid biopsy of blood or urine), and are quantitated using assays that yield high diagnostic sensitivity and specificity for efficient diagnosis, prognosis, or predicting response to therapy. Validated biomarkers with these features are rare. While the advent of proteomics and genomics has led to the identification of a multitude of proteins and nucleic acid sequences as cancer biomarkers, relatively few have been approved for clinical use. The use of multiplex arrays and artificial intelligence-driven algorithms offer the option of combining data of known biomarkers; however, for most, the sensitivity and the specificity are below acceptable criteria, and clinical validation has proven difficult. One strategic solution to this problem is to expand the biomarker families beyond those currently exploited. One unexploited family of cancer biomarkers comprise glycoproteins, carbohydrates, and glycolipids (the Tumor Glycocode). Here, we focus on a family of glycolipid cancer biomarkers, the tumor-marker gangliosides (TMGs). We discuss the diagnostic potential of TMGs for detecting cancer, especially at early stages. We include prior studies from the literature to summarize findings for ganglioside quantification, expression, detection, and biological function and its role in various cancers. We highlight the examples of TMGs exhibiting ideal properties of cancer diagnostic biomarkers, and the application of GD2 and GD3 for diagnosis of early stage cancers with high sensitivity and specificity. We propose that a quantitative matrix of the Cancer Biomarker Glycocode and artificial intelligence-driven algorithms will expand the menu of validated cancer biomarkers as a step to resolve some of the challenges in cancer diagnosis, and yield a combination that can identify a specific cancer, in a tissue-agnostic manner especially at early stages, to enable early intervention.
一类尚未得到充分利用的癌症生物标志物包括糖蛋白、碳水化合物和糖脂(肿瘤糖密码)。一类糖脂癌症生物标志物,即肿瘤标志物神经节苷脂(TMGs),在此作为检测癌症的潜在诊断方法被提出,尤其是在早期阶段,因为TMGs的生物学功能使其具有病因学意义。我们提出,癌症生物标志物糖密码的定量矩阵和人工智能驱动的算法将扩大经过验证的癌症生物标志物的范围,作为解决癌症诊断中一些挑战的一步,并产生一种能够以组织无关的方式,特别是在早期阶段识别特定癌症的组合,从而实现早期干预。诊断对于降低癌症死亡率至关重要,但许多癌症缺乏高效且有效的诊断测试,尤其是针对早期疾病。理想的诊断生物标志物应具有病因学意义,样本最好通过非侵入性方法获取(例如血液或尿液的液体活检),并使用能够产生高诊断敏感性和特异性以实现高效诊断、预后评估或预测治疗反应的检测方法进行定量。具有这些特征的经过验证的生物标志物很少见。虽然蛋白质组学和基因组学的出现导致了大量蛋白质和核酸序列被鉴定为癌症生物标志物,但相对较少的生物标志物已被批准用于临床。使用多重阵列和人工智能驱动的算法提供了组合已知生物标志物数据的选择;然而,对于大多数情况,敏感性和特异性低于可接受标准,并且临床验证已被证明很困难。解决这个问题的一个战略方案是扩大生物标志物家族,使其超出目前所利用的范围。一类尚未得到充分利用的癌症生物标志物包括糖蛋白、碳水化合物和糖脂(肿瘤糖密码)。在此,我们聚焦于一类糖脂癌症生物标志物,即肿瘤标志物神经节苷脂(TMGs)。我们讨论了TMGs在检测癌症,尤其是早期癌症方面的诊断潜力。我们纳入了文献中的先前研究,以总结神经节苷脂定量、表达、检测及其生物学功能以及它在各种癌症中的作用的研究结果。我们强调了表现出癌症诊断生物标志物理想特性的TMGs实例,以及GD2和GD3在高灵敏度和特异性诊断早期癌症中的应用。我们提出,癌症生物标志物糖密码的定量矩阵和人工智能驱动的算法将扩大经过验证的癌症生物标志物的范围,作为解决癌症诊断中一些挑战的一步,并产生一种能够以组织无关的方式,特别是在早期阶段识别特定癌症的组合,从而实现早期干预。