Suppr超能文献

马尔可夫模型联合磁共振扩散张量成像用于预测阿尔茨海默病的发病

Markov model combined with MR diffusion tensor imaging for predicting the onset of Alzheimer's disease.

作者信息

Lang Lili, Wang Ying

机构信息

Basic Medical College, Changzhi Medical College, Changzhi, Shanxi, 046000, China.

Endoscopic Chamber, Muling Town Forest District Hospital, Mudanjiang, Heilongjiang, 157513, China.

出版信息

Open Life Sci. 2023 Nov 8;18(1):20220714. doi: 10.1515/biol-2022-0714. eCollection 2023.

Abstract

Alzheimer's disease (AD) affects cognition, behavior, and memory of brain. It causes 60-80% of dementia cases. Cross-sectional imaging investigations of AD show that magnetic resonance (MR) with diffusion tensor image (DTI)-detected lesion locations in AD patients are heterogeneous and distributed across the imaging area. This study suggested that Markov model (MM) combined with MR-DTI (MM + MR-DTI) was offered as a method for predicting the onset of AD. In 120 subjects (normal controls [NCs], amnestic mild cognitive impairment [aMCI] patients, and AD patients) from a discovery dataset and 122 subjects (NCs, aMCI, and AD) from a replicated dataset, we used them to evaluate the white matter (WM) integrity and abnormalities. We did this by using automated fiber quantification, which allowed us to identify 20 central WM tracts. Point-wise alterations in WM tracts were shown using discovery and replication datasets. The statistical analysis revealed a substantial correlation between microstructural WM alterations and output in the patient groups and cognitive performance, suggesting that this may be a potential biomarker for AD. The MR-based classifier demonstrated the following performance levels for the basis classifiers, with DTI achieving the lowest performance. The following outcomes were seen in MM + MR-DTI using multimodal techniques when combining two modalities. Finally, a combination of every imaging method produced results with an accuracy of 98%, a specificity of 97%, and a sensitivity of 99%. In summary, DTI performs better when paired with structural MR, despite its relatively weak performance when used alone. These findings support the idea that WM modifications play a significant role in AD.

摘要

阿尔茨海默病(AD)会影响大脑的认知、行为和记忆。它导致60%-80%的痴呆病例。AD的横断面成像研究表明,磁共振(MR)结合扩散张量成像(DTI)检测到的AD患者病变位置具有异质性,且分布于整个成像区域。本研究表明,马尔可夫模型(MM)结合MR-DTI(MM + MR-DTI)可作为预测AD发病的一种方法。在来自发现数据集的120名受试者(正常对照[NCs]、遗忘型轻度认知障碍[aMCI]患者和AD患者)以及来自复制数据集的122名受试者(NCs、aMCI和AD)中,我们用其评估白质(WM)完整性和异常情况。我们通过使用自动纤维定量分析来做到这一点,该分析使我们能够识别20条中央WM束。利用发现和复制数据集展示了WM束的逐点改变。统计分析揭示了患者组中WM微观结构改变与输出及认知表现之间存在显著相关性,这表明这可能是AD的一个潜在生物标志物。基于MR的分类器在基础分类器方面表现出以下性能水平,DTI的性能最低。当结合两种模式使用多模态技术时,MM + MR-DTI出现了以下结果。最后,每种成像方法相结合产生的结果准确率为98%,特异性为97%,灵敏度为99%。总之,DTI与结构MR配对时表现更好,尽管其单独使用时性能相对较弱。这些发现支持了WM改变在AD中起重要作用这一观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc83/10638840/ceb17fac4f1e/j_biol-2022-0714-ga001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验