Suppr超能文献

基于MRI深度学习的阿尔茨海默病预测解决方案。

MRI Deep Learning-Based Solution for Alzheimer's Disease Prediction.

作者信息

Saratxaga Cristina L, Moya Iratxe, Picón Artzai, Acosta Marina, Moreno-Fernandez-de-Leceta Aitor, Garrote Estibaliz, Bereciartua-Perez Arantza

机构信息

TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, C/Geldo. Edificio 700, 48160 Derio, Spain.

Instituto Ibermática de Innovación, Unidad de Inteligencia Artificial Avenida de los Huetos, Edificio Azucarera, 01010 Vitoria, Spain.

出版信息

J Pers Med. 2021 Sep 9;11(9):902. doi: 10.3390/jpm11090902.

Abstract

BACKGROUND

Alzheimer's is a degenerative dementing disorder that starts with a mild memory impairment and progresses to a total loss of mental and physical faculties. The sooner the diagnosis is made, the better for the patient, as preventive actions and treatment can be started. Although tests such as the Mini-Mental State Tests Examination are usually used for early identification, diagnosis relies on magnetic resonance imaging (MRI) brain analysis.

METHODS

Public initiatives such as the OASIS (Open Access Series of Imaging Studies) collection provide neuroimaging datasets openly available for research purposes. In this work, a new method based on deep learning and image processing techniques for MRI-based Alzheimer's diagnosis is proposed and compared with previous literature works.

RESULTS

Our method achieves a balance accuracy (BAC) up to 0.93 for image-based automated diagnosis of the disease, and a BAC of 0.88 for the establishment of the disease stage (healthy tissue, very mild and severe stage).

CONCLUSIONS

Results obtained surpassed the state-of-the-art proposals using the OASIS collection. This demonstrates that deep learning-based strategies are an effective tool for building a robust solution for Alzheimer's-assisted diagnosis based on MRI data.

摘要

背景

阿尔茨海默病是一种退行性痴呆症,始于轻度记忆障碍,进而发展为精神和身体机能完全丧失。诊断越早对患者越好,因为可以尽早开始预防措施和治疗。虽然通常使用简易精神状态检查表等测试进行早期识别,但诊断依赖于磁共振成像(MRI)脑部分析。

方法

诸如OASIS(开放获取影像研究系列)数据集等公共项目提供了可公开用于研究目的的神经影像数据集。在这项工作中,提出了一种基于深度学习和图像处理技术的用于基于MRI的阿尔茨海默病诊断的新方法,并与先前的文献研究进行了比较。

结果

我们的方法在基于图像的疾病自动诊断中实现了高达0.93的平衡准确率(BAC),在疾病阶段(健康组织、极轻度和重度阶段)判定中BAC为0.88。

结论

使用OASIS数据集获得的结果超过了现有技术方案。这表明基于深度学习的策略是基于MRI数据构建强大的阿尔茨海默病辅助诊断解决方案的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7221/8466762/f6333f1ae679/jpm-11-00902-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验