Suppr超能文献

自然语言处理在临床神经科学中的应用:机器学习增强的系统综述。

Natural Language Processing Applications in the Clinical Neurosciences: A Machine Learning Augmented Systematic Review.

机构信息

School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia.

Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia.

出版信息

Acta Neurochir Suppl. 2022;134:277-289. doi: 10.1007/978-3-030-85292-4_32.

Abstract

Natural language processing (NLP), a domain of artificial intelligence (AI) that models human language, has been used in medicine to automate diagnostics, detect adverse events, support decision making and predict clinical outcomes. However, applications to the clinical neurosciences appear to be limited. NLP has matured with the implementation of deep transformer models (e.g., XLNet, BERT, T5, and RoBERTa) and transfer learning. The objectives of this study were to (1) systematically review NLP applications in the clinical neurosciences, and (2) explore NLP analysis to facilitate literature synthesis, providing clear examples to demonstrate the potential capabilities of these technologies for a clinical audience. Our NLP analysis consisted of keyword identification, text summarization and document classification. A total of 48 articles met inclusion criteria. NLP has been applied in the clinical neurosciences to facilitate literature synthesis, data extraction, patient identification, automated clinical reporting and outcome prediction. The number of publications applying NLP has increased rapidly over the past five years. Document classifiers trained to differentiate included and excluded articles demonstrated moderate performance (XLNet AUC = 0.66, BERT AUC = 0.59, RoBERTa AUC = 0.62). The T5 transformer model generated acceptable abstract summaries. The application of NLP has the potential to enhance research and practice in the clinical neurosciences.

摘要

自然语言处理(NLP)是人工智能(AI)的一个领域,用于模拟人类语言,已在医学中用于自动化诊断、检测不良事件、支持决策和预测临床结果。然而,其在临床神经科学中的应用似乎受到限制。随着深度转换器模型(例如 XLNet、BERT、T5 和 RoBERTa)和迁移学习的实施,NLP 已经成熟。本研究的目的是:(1)系统综述 NLP 在临床神经科学中的应用;(2)探索 NLP 分析以促进文献综合,提供清晰的示例,向临床受众展示这些技术的潜在能力。我们的 NLP 分析包括关键词识别、文本总结和文档分类。共有 48 篇文章符合纳入标准。NLP 已应用于临床神经科学,以促进文献综合、数据提取、患者识别、自动临床报告和结果预测。在过去五年中,应用 NLP 的出版物数量迅速增加。经过训练以区分包含和排除文章的文档分类器表现出中等性能(XLNet AUC=0.66,BERT AUC=0.59,RoBERTa AUC=0.62)。T5 转换器模型生成的摘要可接受。NLP 的应用有可能增强临床神经科学的研究和实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验