Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA.
Oecologia. 2012 Apr;168(4):1147-60. doi: 10.1007/s00442-011-2165-z. Epub 2011 Oct 28.
Airborne light detection and ranging (LiDAR) is fast turning the corner from demonstration technology to a key tool for assessing carbon stocks in tropical forests. With its ability to penetrate tropical forest canopies and detect three-dimensional forest structure, LiDAR may prove to be a major component of international strategies to measure and account for carbon emissions from and uptake by tropical forests. To date, however, basic ecological information such as height-diameter allometry and stand-level wood density have not been mechanistically incorporated into methods for mapping forest carbon at regional and global scales. A better incorporation of these structural patterns in forests may reduce the considerable time needed to calibrate airborne data with ground-based forest inventory plots, which presently necessitate exhaustive measurements of tree diameters and heights, as well as tree identifications for wood density estimation. Here, we develop a new approach that can facilitate rapid LiDAR calibration with minimal field data. Throughout four tropical regions (Panama, Peru, Madagascar, and Hawaii), we were able to predict aboveground carbon density estimated in field inventory plots using a single universal LiDAR model (r ( 2 ) = 0.80, RMSE = 27.6 Mg C ha(-1)). This model is comparable in predictive power to locally calibrated models, but relies on limited inputs of basal area and wood density information for a given region, rather than on traditional plot inventories. With this approach, we propose to radically decrease the time required to calibrate airborne LiDAR data and thus increase the output of high-resolution carbon maps, supporting tropical forest conservation and climate mitigation policy.
机载激光探测和测距 (LiDAR) 正迅速从演示技术转变为评估热带森林碳储量的关键工具。由于它能够穿透热带森林树冠并探测三维森林结构,LiDAR 可能成为衡量和核算热带森林碳排放及其吸收量的国际战略的重要组成部分。然而,到目前为止,高度-直径比和林分水平的木材密度等基本生态信息尚未被纳入到区域和全球尺度的森林碳测绘方法中。在森林中更好地纳入这些结构模式,可能会减少校准机载数据与地面森林清查样地所需的大量时间,而目前这需要对树木直径和高度进行详尽的测量,以及进行木材密度估计的树种识别。在这里,我们开发了一种新方法,可以在最小的野外数据条件下实现快速的 LiDAR 校准。在四个热带地区(巴拿马、秘鲁、马达加斯加和夏威夷),我们能够使用单个通用 LiDAR 模型预测地面清查样地中估算的地上碳密度(r ( 2 ) = 0.80,RMSE = 27.6 Mg C ha(-1))。该模型在预测能力上与本地校准模型相当,但仅依赖于给定区域的有限的基面积和木材密度信息,而不是传统的样地清查。通过这种方法,我们建议大幅减少校准机载 LiDAR 数据所需的时间,从而增加高分辨率碳图的输出,支持热带森林保护和气候缓解政策。
Oecologia. 2011-10-28
Proc Natl Acad Sci U S A. 2014-12-2
Carbon Balance Manag. 2016-5-31
Ecol Appl. 2020-10
Sci Data. 2023-9-30
Environ Monit Assess. 2015-10
Sensors (Basel). 2024-2-8
Sensors (Basel). 2023-1-5
Front Plant Sci. 2020-10-20
Carbon Balance Manag. 2018-5-15
Proc Natl Acad Sci U S A. 2010-9-7
Ecol Lett. 2009-4
PLoS Biol. 2008-3-4