Suppr超能文献

硼中子俘获治疗的卷积/叠加方法剂量计算算法。

A dose calculation algorithm for boron neutron capture therapy using convolution/superposition method.

机构信息

Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.

Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.

出版信息

Appl Radiat Isot. 2024 Jan;203:111102. doi: 10.1016/j.apradiso.2023.111102. Epub 2023 Nov 3.

Abstract

The convolution/superposition (C/S) method originally designed for photon dose calculation was first applied for developing a treatment planning system for boron neutron capture therapy. The original concept of TEGMA (total energy generated per unit mass) was proposed to represent distinctive dose components from neutron reactions with the elements in the patient's tissue. First, neutron fluence distributions in a homogeneous brain phantom irradiated with an energy-groupwise pencil beam of 2.5 × 2.5 mm were calculated using the MCNP6.2 code. Then, a library of energy-groupwise TEGMA and KERMA were generated and stored in the developed C/S code. As a benchmark, dose distributions in a cuboid phantom and a human head phantom were calculated using the developed C/S and PHITS Monte Carlo codes. A neutron beam having a continuous epithermal spectrum and a square field of 22.5 × 22.5 mm or a circle field of 22.5 mm in diameter was assumed to be incident on the phantoms. The human head phantom was created by the pre-processing including the voxelization and transformation of test DICOM CT images. The differences in boron doses between C/S and MC ranged from 2% to 6%. In nitrogen doses, the differences were from 4% to 9%. A large discrepancy observed in hydrogen lateral dose profiles could be explained by the differences in cross-section data and recoil-proton transport algorithms of MCNP6.2 and PHITS. With isodose curves normalized at the center of the tumor in the human head phantom, they were almost identical in the range of 60%-110% for both cases. The C/S have underestimated the backscattering neutron and showed a larger absorbed dose gradient around 40% region. The calculation time of C/S using Intel i7-10700 processor was less than 1 min for both phantoms. The calculation time of PHITS using three Intel Xeon E5-2640 v4 processors was 15.5 min for the cuboid phantom and ∼380 min for the human head phantom. The proposed algorithm has the advantages of high speed while promising fair accuracy in BNCT dose calculations.

摘要

卷积/叠加(C/S)方法最初设计用于光子剂量计算,首次应用于开发硼中子俘获治疗的治疗计划系统。提出了 TEGMA(单位质量产生的总能量)的原始概念,以表示与患者组织中元素的中子反应产生的独特剂量分量。首先,使用 MCNP6.2 代码计算了用 2.5×2.5mm 能群铅笔束照射的均匀脑模型中的中子通量分布。然后,生成并存储在开发的 C/S 代码中的能群 TEGMA 和 KERMA 库。作为基准,使用开发的 C/S 和 PHITS 蒙特卡罗代码计算了长方体模型和人头模型中的剂量分布。假设入射到模型的是具有连续超热谱的中子束和 22.5×22.5mm 的方形场或直径为 22.5mm 的圆形场。人头模型是通过包括体素化和转换测试 DICOM CT 图像的预处理创建的。C/S 和 MC 之间硼剂量的差异在 2%到 6%之间。在氮剂量中,差异在 4%到 9%之间。在人头模型中,氢侧剂量分布的较大差异可以用 MCNP6.2 和 PHITS 的横截面数据和反冲质子输运算法的差异来解释。用人头模型中肿瘤中心的等剂量曲线归一化,在两种情况下,在 60%到 110%的范围内几乎相同。C/S 低估了反向散射中子,并在 40%区域周围显示出较大的吸收剂量梯度。使用 Intel i7-10700 处理器,C/S 的计算时间对于两个模型都不到 1 分钟。使用三个 Intel Xeon E5-2640 v4 处理器,PHITS 的计算时间对于长方体模型为 15.5 分钟,对于人头模型为 ∼380 分钟。所提出的算法具有高速的优点,同时在 BNCT 剂量计算中具有相当的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验