Suppr超能文献

使用 G-STRIDE 惯性传感器预测老年人跌倒风险:一项观察性多中心病例对照研究。

Predictors of fall risk in older adults using the G-STRIDE inertial sensor: an observational multicenter case-control study.

机构信息

Department of Geriatrics, Foundation for Research and Biomedical Innovation of the Infanta Sofía University Hospital and Henares University Hospital, (FIIB HUIS HHEN), European University, 28702, Madrid, Spain.

School of Experimental Sciences and Technology, Rey Juan Carlos University, 28933, Madrid, Spain.

出版信息

BMC Geriatr. 2023 Nov 13;23(1):737. doi: 10.1186/s12877-023-04379-y.

Abstract

BACKGROUND

There are a lot of tools to use for fall assessment, but there is not yet one that predicts the risk of falls in the elderly. This study aims to evaluate the use of the G-STRIDE prototype in the analysis of fall risk, defining the cut-off points to predict the risk of falling and developing a predictive model that allows discriminating between subjects with and without fall risks and those at risk of future falls.

METHODS

An observational, multicenter case-control study was conducted with older people coming from two different public hospitals and three different nursing homes. We gathered clinical variables ( Short Physical Performance Battery (SPPB), Standardized Frailty Criteria, Speed 4 m walk, Falls Efficacy Scale-International (FES-I), Time-Up Go Test, and Global Deterioration Scale (GDS)) and measured gait kinematics using an inertial measure unit (IMU). We performed a logistic regression model using a training set of observations (70% of the participants) to predict the probability of falls.

RESULTS

A total of 163 participants were included, 86 people with gait and balance disorders or falls and 77 without falls; 67,8% were females, with a mean age of 82,63 ± 6,01 years. G-STRIDE made it possible to measure gait parameters under normal living conditions. There are 46 cut-off values of conventional clinical parameters and those estimated with the G-STRIDE solution. A logistic regression mixed model, with four conventional and 2 kinematic variables allows us to identify people at risk of falls showing good predictive value with AUC of 77,6% (sensitivity 0,773 y specificity 0,780). In addition, we could predict the fallers in the test group (30% observations not in the model) with similar performance to conventional methods.

CONCLUSIONS

The G-STRIDE IMU device allows to predict the risk of falls using a mixed model with an accuracy of 0,776 with similar performance to conventional model. This approach allows better precision, low cost and less infrastructures for an early intervention and prevention of future falls.

摘要

背景

有很多工具可用于评估跌倒风险,但还没有一种工具可以预测老年人的跌倒风险。本研究旨在评估 G-STRIDE 原型在分析跌倒风险中的使用,确定预测跌倒风险的截止值,并开发一种预测模型,以区分有跌倒风险和无跌倒风险的受试者以及有未来跌倒风险的受试者。

方法

本研究为一项观察性、多中心病例对照研究,纳入来自两家不同公立医院和三家不同养老院的老年人。我们收集了临床变量(简易体能状况量表(SPPB)、标准化虚弱标准、4 米步行速度、国际跌倒效能量表(FES-I)、起立-行走计时测试和总体衰退量表(GDS))和使用惯性测量单元(IMU)测量步态运动学。我们使用训练集观察结果(70%的参与者)进行逻辑回归模型,以预测跌倒的概率。

结果

共纳入 163 名参与者,其中 86 名有步态和平衡障碍或跌倒,77 名无跌倒;67.8%为女性,平均年龄为 82.63±6.01 岁。G-STRIDE 可在正常生活条件下测量步态参数。有 46 个传统临床参数和 G-STRIDE 解决方案估计的参数的截断值。一个包含四个传统变量和两个运动学变量的逻辑回归混合模型,可以识别出有跌倒风险的人,具有 77.6%的良好预测值(敏感性 0.773,特异性 0.780)。此外,我们可以使用类似的传统方法预测测试组中的跌倒者(30%的观察结果不在模型中)。

结论

G-STRIDE IMU 设备可以使用混合模型以 0.776 的准确率预测跌倒风险,其性能与传统模型相似。这种方法可以提高精度、降低成本,并减少基础设施,以便早期干预和预防未来跌倒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d47f/10644581/e88cc44f4fee/12877_2023_4379_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验