Suppr超能文献

利用稀疏标注实现电子显微镜癌症图像的高效半监督语义分割。

Efficient semi-supervised semantic segmentation of electron microscopy cancer images with sparse annotations.

作者信息

Pagano Lucas, Thibault Guillaume, Bousselham Walid, Riesterer Jessica L, Song Xubo, Gray Joe W

机构信息

Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA.

Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.

出版信息

bioRxiv. 2023 Nov 1:2023.10.30.563998. doi: 10.1101/2023.10.30.563998.

Abstract

Electron microscopy (EM) enables imaging at nanometer resolution and can shed light on how cancer evolves to develop resistance to therapy. Acquiring these images has become a routine task; however, analyzing them is now the bottleneck, as manual structure identification is very time-consuming and can take up to several months for a single sample. Deep learning approaches offer a suitable solution to speed up the analysis. In this work, we present a study of several state-of-the-art deep learning models for the task of segmenting nuclei and nucleoli in volumes from tumor biopsies. We compared previous results obtained with the ResUNet architecture to the more recent UNet++, FracTALResNet, SenFormer, and CEECNet models. In addition, we explored the utilization of unlabeled images through semi-supervised learning with Cross Pseudo Supervision. We have trained and evaluated all of the models on sparse manual labels from three fully annotated in-house datasets that we have made available on demand, demonstrating improvements in terms of 3D Dice score. From the analysis of these results, we drew conclusions on the relative gains of using more complex models, semi-supervised learning as well as next steps for the mitigation of the manual segmentation bottleneck.

摘要

电子显微镜(EM)能够实现纳米级分辨率成像,并有助于揭示癌症如何演变以产生治疗抗性。获取这些图像已成为一项常规任务;然而,分析这些图像现在却成了瓶颈,因为手动进行结构识别非常耗时,对单个样本而言可能需要长达数月时间。深度学习方法为加快分析提供了合适的解决方案。在这项工作中,我们针对从肿瘤活检样本的体积中分割细胞核和核仁的任务,对几种最先进的深度学习模型展开了研究。我们将之前使用ResUNet架构获得的结果与更新的UNet++、FracTALResNet、SenFormer和CEECNet模型进行了比较。此外,我们还通过交叉伪监督的半监督学习探索了未标记图像的利用。我们在三个按需提供的完全注释的内部数据集的稀疏手动标签上对所有模型进行了训练和评估,结果表明在三维骰子系数方面有了改进。通过对这些结果的分析,我们得出了关于使用更复杂模型、半监督学习的相对优势以及缓解手动分割瓶颈的后续步骤的结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/10635003/eaf123361baa/nihpp-2023.10.30.563998v1-f0001.jpg

相似文献

2
Efficient semi-supervised semantic segmentation of electron microscopy cancer images with sparse annotations.
Front Bioinform. 2023 Dec 15;3:1308707. doi: 10.3389/fbinf.2023.1308707. eCollection 2023.
3
Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
Med Image Anal. 2023 Jul;87:102792. doi: 10.1016/j.media.2023.102792. Epub 2023 Mar 11.
4
Segmentation in large-scale cellular electron microscopy with deep learning: A literature survey.
Med Image Anal. 2023 Oct;89:102920. doi: 10.1016/j.media.2023.102920. Epub 2023 Aug 6.
5
PyMIC: A deep learning toolkit for annotation-efficient medical image segmentation.
Comput Methods Programs Biomed. 2023 Apr;231:107398. doi: 10.1016/j.cmpb.2023.107398. Epub 2023 Feb 7.
6
Semi-supervised learning towards automated segmentation of PET images with limited annotations: application to lymphoma patients.
Phys Eng Sci Med. 2024 Sep;47(3):833-849. doi: 10.1007/s13246-024-01408-x. Epub 2024 Mar 21.
7
Cyclic Learning: Bridging Image-Level Labels and Nuclei Instance Segmentation.
IEEE Trans Med Imaging. 2023 Oct;42(10):3104-3116. doi: 10.1109/TMI.2023.3275609. Epub 2023 Oct 2.
8
Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.
Comput Methods Programs Biomed. 2022 Nov;226:107099. doi: 10.1016/j.cmpb.2022.107099. Epub 2022 Sep 2.
9
Semi-supervised abdominal multi-organ segmentation by object-redrawing.
Med Phys. 2024 Nov;51(11):8334-8347. doi: 10.1002/mp.17364. Epub 2024 Aug 21.
10
Segmentation only uses sparse annotations: Unified weakly and semi-supervised learning in medical images.
Med Image Anal. 2022 Aug;80:102515. doi: 10.1016/j.media.2022.102515. Epub 2022 Jun 17.

本文引用的文献

1
Segmentation of cellular ultrastructures on sparsely labeled 3D electron microscopy images using deep learning.
Front Bioinform. 2023 Dec 15;3:1308708. doi: 10.3389/fbinf.2023.1308708. eCollection 2023.
2
Deep learning based segmentation of brain tissue from diffusion MRI.
Neuroimage. 2021 Jun;233:117934. doi: 10.1016/j.neuroimage.2021.117934. Epub 2021 Mar 16.
3
MSU-Net: Multi-Scale U-Net for 2D Medical Image Segmentation.
Front Genet. 2021 Feb 11;12:639930. doi: 10.3389/fgene.2021.639930. eCollection 2021.
4
Semantic segmentation of HeLa cells: An objective comparison between one traditional algorithm and four deep-learning architectures.
PLoS One. 2020 Oct 2;15(10):e0230605. doi: 10.1371/journal.pone.0230605. eCollection 2020.
5
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
6
Tumor microenvironment complexity and therapeutic implications at a glance.
Cell Commun Signal. 2020 Apr 7;18(1):59. doi: 10.1186/s12964-020-0530-4.
7
Stromal barriers to nanomedicine penetration in the pancreatic tumor microenvironment.
Cancer Sci. 2018 Jul;109(7):2085-2092. doi: 10.1111/cas.13630. Epub 2018 Jun 9.
8
Nucleolus as an emerging hub in maintenance of genome stability and cancer pathogenesis.
Oncogene. 2018 May;37(18):2351-2366. doi: 10.1038/s41388-017-0121-z. Epub 2018 Feb 12.
9
Tumor Microenvironment and Differential Responses to Therapy.
Cold Spring Harb Perspect Med. 2017 Jul 5;7(7):a026781. doi: 10.1101/cshperspect.a026781.
10
Cancer nanomedicine: progress, challenges and opportunities.
Nat Rev Cancer. 2017 Jan;17(1):20-37. doi: 10.1038/nrc.2016.108. Epub 2016 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验