Suppr超能文献

半监督学习在有限标注 PET 图像自动分割中的应用:在淋巴瘤患者中的应用。

Semi-supervised learning towards automated segmentation of PET images with limited annotations: application to lymphoma patients.

机构信息

Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland.

出版信息

Phys Eng Sci Med. 2024 Sep;47(3):833-849. doi: 10.1007/s13246-024-01408-x. Epub 2024 Mar 21.

Abstract

Manual segmentation poses a time-consuming challenge for disease quantification, therapy evaluation, treatment planning, and outcome prediction. Convolutional neural networks (CNNs) hold promise in accurately identifying tumor locations and boundaries in PET scans. However, a major hurdle is the extensive amount of supervised and annotated data necessary for training. To overcome this limitation, this study explores semi-supervised approaches utilizing unlabeled data, specifically focusing on PET images of diffuse large B-cell lymphoma (DLBCL) and primary mediastinal large B-cell lymphoma (PMBCL) obtained from two centers. We considered 2-[F]FDG PET images of 292 patients PMBCL (n = 104) and DLBCL (n = 188) (n = 232 for training and validation, and n = 60 for external testing). We harnessed classical wisdom embedded in traditional segmentation methods, such as the fuzzy clustering loss function (FCM), to tailor the training strategy for a 3D U-Net model, incorporating both supervised and unsupervised learning approaches. Various supervision levels were explored, including fully supervised methods with labeled FCM and unified focal/Dice loss, unsupervised methods with robust FCM (RFCM) and Mumford-Shah (MS) loss, and semi-supervised methods combining FCM with supervised Dice loss (MS + Dice) or labeled FCM (RFCM + FCM). The unified loss function yielded higher Dice scores (0.73 ± 0.11; 95% CI 0.67-0.8) than Dice loss (p value < 0.01). Among the semi-supervised approaches, RFCM + αFCM (α = 0.3) showed the best performance, with Dice score of 0.68 ± 0.10 (95% CI 0.45-0.77), outperforming MS + αDice for any supervision level (any α) (p < 0.01). Another semi-supervised approach with MS + αDice (α = 0.2) achieved Dice score of 0.59 ± 0.09 (95% CI 0.44-0.76) surpassing other supervision levels (p < 0.01). Given the time-consuming nature of manual delineations and the inconsistencies they may introduce, semi-supervised approaches hold promise for automating medical imaging segmentation workflows.

摘要

手动分割在疾病定量、治疗评估、治疗计划和结果预测方面存在耗时的挑战。卷积神经网络 (CNN) 有望在准确识别 PET 扫描中的肿瘤位置和边界方面发挥作用。然而,一个主要的障碍是训练所需的大量监督和注释数据。为了克服这一限制,本研究探讨了利用未标记数据的半监督方法,特别是针对从两个中心获得的弥漫性大 B 细胞淋巴瘤 (DLBCL) 和原发性纵隔大 B 细胞淋巴瘤 (PMBCL) 的 PET 图像。我们考虑了 292 例 PMBCL(n=104)和 DLBCL(n=188)患者的 2-[F]FDG PET 图像(n=232 用于训练和验证,n=60 用于外部测试)。我们利用传统分割方法中嵌入的经典智慧,例如模糊聚类损失函数 (FCM),为 3D U-Net 模型量身定制训练策略,同时结合监督和无监督学习方法。探索了各种监督级别,包括具有标记 FCM 和统一焦点/骰子损失的完全监督方法、具有稳健 FCM (RFCM) 和 Mumford-Shah (MS) 损失的无监督方法,以及结合 FCM 与监督 Dice 损失 (MS+Dice) 或标记 FCM (RFCM+FCM) 的半监督方法。统一损失函数产生的 Dice 分数(0.73±0.11;95%CI 0.67-0.8)高于 Dice 损失(p 值<0.01)。在半监督方法中,RFCM+αFCM(α=0.3)表现最佳,Dice 分数为 0.68±0.10(95%CI 0.45-0.77),优于任何监督水平(任何 α)的 MS+αDice(p<0.01)。另一种具有 MS+αDice(α=0.2)的半监督方法实现了 0.59±0.09 的 Dice 分数(95%CI 0.44-0.76),超过了其他监督水平(p<0.01)。鉴于手动描绘的耗时性质及其可能引入的不一致性,半监督方法有望实现医学成像分割工作流程的自动化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验