Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland.
Phys Eng Sci Med. 2024 Sep;47(3):833-849. doi: 10.1007/s13246-024-01408-x. Epub 2024 Mar 21.
Manual segmentation poses a time-consuming challenge for disease quantification, therapy evaluation, treatment planning, and outcome prediction. Convolutional neural networks (CNNs) hold promise in accurately identifying tumor locations and boundaries in PET scans. However, a major hurdle is the extensive amount of supervised and annotated data necessary for training. To overcome this limitation, this study explores semi-supervised approaches utilizing unlabeled data, specifically focusing on PET images of diffuse large B-cell lymphoma (DLBCL) and primary mediastinal large B-cell lymphoma (PMBCL) obtained from two centers. We considered 2-[F]FDG PET images of 292 patients PMBCL (n = 104) and DLBCL (n = 188) (n = 232 for training and validation, and n = 60 for external testing). We harnessed classical wisdom embedded in traditional segmentation methods, such as the fuzzy clustering loss function (FCM), to tailor the training strategy for a 3D U-Net model, incorporating both supervised and unsupervised learning approaches. Various supervision levels were explored, including fully supervised methods with labeled FCM and unified focal/Dice loss, unsupervised methods with robust FCM (RFCM) and Mumford-Shah (MS) loss, and semi-supervised methods combining FCM with supervised Dice loss (MS + Dice) or labeled FCM (RFCM + FCM). The unified loss function yielded higher Dice scores (0.73 ± 0.11; 95% CI 0.67-0.8) than Dice loss (p value < 0.01). Among the semi-supervised approaches, RFCM + αFCM (α = 0.3) showed the best performance, with Dice score of 0.68 ± 0.10 (95% CI 0.45-0.77), outperforming MS + αDice for any supervision level (any α) (p < 0.01). Another semi-supervised approach with MS + αDice (α = 0.2) achieved Dice score of 0.59 ± 0.09 (95% CI 0.44-0.76) surpassing other supervision levels (p < 0.01). Given the time-consuming nature of manual delineations and the inconsistencies they may introduce, semi-supervised approaches hold promise for automating medical imaging segmentation workflows.
手动分割在疾病定量、治疗评估、治疗计划和结果预测方面存在耗时的挑战。卷积神经网络 (CNN) 有望在准确识别 PET 扫描中的肿瘤位置和边界方面发挥作用。然而,一个主要的障碍是训练所需的大量监督和注释数据。为了克服这一限制,本研究探讨了利用未标记数据的半监督方法,特别是针对从两个中心获得的弥漫性大 B 细胞淋巴瘤 (DLBCL) 和原发性纵隔大 B 细胞淋巴瘤 (PMBCL) 的 PET 图像。我们考虑了 292 例 PMBCL(n=104)和 DLBCL(n=188)患者的 2-[F]FDG PET 图像(n=232 用于训练和验证,n=60 用于外部测试)。我们利用传统分割方法中嵌入的经典智慧,例如模糊聚类损失函数 (FCM),为 3D U-Net 模型量身定制训练策略,同时结合监督和无监督学习方法。探索了各种监督级别,包括具有标记 FCM 和统一焦点/骰子损失的完全监督方法、具有稳健 FCM (RFCM) 和 Mumford-Shah (MS) 损失的无监督方法,以及结合 FCM 与监督 Dice 损失 (MS+Dice) 或标记 FCM (RFCM+FCM) 的半监督方法。统一损失函数产生的 Dice 分数(0.73±0.11;95%CI 0.67-0.8)高于 Dice 损失(p 值<0.01)。在半监督方法中,RFCM+αFCM(α=0.3)表现最佳,Dice 分数为 0.68±0.10(95%CI 0.45-0.77),优于任何监督水平(任何 α)的 MS+αDice(p<0.01)。另一种具有 MS+αDice(α=0.2)的半监督方法实现了 0.59±0.09 的 Dice 分数(95%CI 0.44-0.76),超过了其他监督水平(p<0.01)。鉴于手动描绘的耗时性质及其可能引入的不一致性,半监督方法有望实现医学成像分割工作流程的自动化。