Suppr超能文献

解码异质单细胞扰动反应。

Decoding Heterogenous Single-cell Perturbation Responses.

作者信息

Song Bicna, Liu Dingyu, Dai Weiwei, McMyn Natalie, Wang Qingyang, Yang Dapeng, Krejci Adam, Vasilyev Anatoly, Untermoser Nicole, Loregger Anke, Song Dongyuan, Williams Breanna, Rosen Bess, Cheng Xiaolong, Chao Lumen, Kale Hanuman T, Zhang Hao, Diao Yarui, Bürckstümmer Tilmann, Siliciano Jenet M, Li Jingyi Jessica, Siliciano Robert, Huangfu Danwei, Li Wei

机构信息

Center for Genetic Medicine Research, Children's National Hospital, Washington DC, USA.

Department of Genomics and Precision Medicine, George Washington University, Washington DC, USA.

出版信息

bioRxiv. 2023 Nov 29:2023.10.30.564796. doi: 10.1101/2023.10.30.564796.

Abstract

Understanding diverse responses of individual cells to the same perturbation is central to many biological and biomedical problems. Current methods, however, do not precisely quantify the strength of perturbation responses and, more importantly, reveal new biological insights from heterogeneity in responses. Here we introduce the perturbation-response score (PS), based on constrained quadratic optimization, to quantify diverse perturbation responses at a single-cell level. Applied to single-cell transcriptomes of large-scale genetic perturbation datasets (e.g., Perturb-seq), PS outperforms existing methods for quantifying partial gene perturbation responses. In addition, PS presents two major advances. First, PS enables large-scale, single-cell-resolution dosage analysis of perturbation, without the need to titrate perturbation strength. By analyzing the dose-response patterns of over 2,000 essential genes in Perturb-seq, we identify two distinct patterns, depending on whether a moderate reduction in their expression induces strong downstream expression alterations. Second, PS identifies intrinsic and extrinsic biological determinants of perturbation responses. We demonstrate the application of PS in contexts such as T cell stimulation, latent HIV-1 expression, and pancreatic cell differentiation. Notably, PS unveiled a previously unrecognized, cell-type-specific role of coiled-coil domain containing 6 (CCDC6) in guiding liver and pancreatic lineage decisions, where CCDC6 knockouts drive the endoderm cell differentiation towards liver lineage, rather than pancreatic lineage. The PS approach provides an innovative method for dose-to-function analysis and will enable new biological discoveries from single-cell perturbation datasets.

摘要

理解单个细胞对相同扰动的不同反应是许多生物学和生物医学问题的核心。然而,目前的方法不能精确量化扰动反应的强度,更重要的是,不能从反应的异质性中揭示新的生物学见解。在这里,我们基于约束二次优化引入了扰动反应评分(PS),以在单细胞水平上量化不同的扰动反应。应用于大规模基因扰动数据集(如Perturb-seq)的单细胞转录组时,PS在量化部分基因扰动反应方面优于现有方法。此外,PS有两个主要进展。首先,PS能够进行大规模、单细胞分辨率的扰动剂量分析,而无需滴定扰动强度。通过分析Perturb-seq中2000多个必需基因的剂量反应模式,我们识别出两种不同的模式,这取决于它们表达的适度降低是否会诱导强烈的下游表达改变。其次,PS识别扰动反应的内在和外在生物学决定因素。我们展示了PS在T细胞刺激、潜伏HIV-1表达和胰腺细胞分化等背景下的应用。值得注意的是,PS揭示了含卷曲螺旋结构域6(CCDC6)在指导肝脏和胰腺谱系决定中以前未被认识的细胞类型特异性作用,其中CCDC6基因敲除驱动内胚层细胞向肝脏谱系而非胰腺谱系分化。PS方法为剂量到功能分析提供了一种创新方法,并将从单细胞扰动数据集中实现新的生物学发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a5d/10695227/3b121aa1af68/nihpp-2023.10.30.564796v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验