Suppr超能文献

一种用于群组皮质肌耦合分析的 IC-PLS 框架。

An IC-PLS framework for group corticomuscular coupling analysis.

机构信息

Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

出版信息

IEEE Trans Biomed Eng. 2013 Jul;60(7):2022-33. doi: 10.1109/TBME.2013.2248059. Epub 2013 Feb 20.

Abstract

Corticomuscular coupling analysis, i.e., examining the relations between simultaneously recorded brain (e.g., electroencephalography--EEG) and muscle (e.g., electro-myography-EMG) signals, is a useful tool for understanding aspects of human motor control. Traditionally, the most popular method to assess corticomuscular coupling has been the pairwise magnitude-squared coherence (MSC) between EEG and concomitant EMG recordings. In this paper, we propose assessing corticomuscular coupling by combining partial least squares (PLS) and independent component analysis (ICA), which addresses many of the limitations of MSC, such as difficulty in robustly assessing group inference and relying on the biologically implausible assumption of pairwise interaction between brain and muscle recordings. In the proposed framework, response relevance and statistical independence are jointly incorporated into a multiobjective optimization function to meaningfully combine the goals of PLS and ICA under the same mathematical umbrella. Simulations, performed under realistic assumptions, illustrated the utility of such an approach. The method was extended to address intersubject variability to robustly discover common corticomuscular coupling patterns across subjects. We then applied the proposed framework to concurrent EEG and EMG data collected in a Parkinson's disease (PD) study. The results from applying the proposed technique revealed temporal components in the EEG and EMG that were significantly correlated with one another. In addition to the expected motor areas, the corresponding spatial activation patterns demonstrated enhanced occipital connectivity in PD subjects, consistent with previous studies suggesting that PD subjects rely excessively on visual information to counteract the deficiency in being able to generate internal commands from their affected basal ganglia.

摘要

皮质肌电耦合分析,即同时记录大脑(如脑电图-EEG)和肌肉(如肌电图-EMG)信号,是理解人类运动控制的一个有用的工具。传统上,评估皮质肌电耦合最常用的方法是 EEG 和同时记录的 EMG 之间的成对幅度平方相干性(MSC)。在本文中,我们提出了一种通过结合偏最小二乘法(PLS)和独立成分分析(ICA)来评估皮质肌电耦合的方法,该方法解决了 MSC 的许多局限性,例如难以稳健地评估组推断以及依赖于大脑和肌肉记录之间的生物上不合理的成对相互作用假设。在所提出的框架中,响应相关性和统计独立性被共同纳入多目标优化函数中,以便在相同的数学保护伞下,有意义地结合 PLS 和 ICA 的目标。在现实假设下进行的模拟说明了这种方法的实用性。该方法被扩展到解决个体间变异性,以稳健地发现跨个体的共同皮质肌电耦合模式。然后,我们将所提出的框架应用于帕金森病(PD)研究中同时采集的 EEG 和 EMG 数据。应用所提出的技术的结果揭示了 EEG 和 EMG 之间彼此显著相关的时间成分。除了预期的运动区域外,相应的空间激活模式显示 PD 患者的枕部连接增强,这与先前的研究一致,表明 PD 患者过度依赖视觉信息来抵消其受影响的基底节无法产生内部命令的缺陷。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验