Suppr超能文献

. 飞行马达中的自激振荡悖论。

The self-oscillation paradox in the flight motor of .

机构信息

Division of Fluid Dynamics, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden.

出版信息

J R Soc Interface. 2023 Nov;20(208):20230421. doi: 10.1098/rsif.2023.0421. Epub 2023 Nov 15.

Abstract

Tiny flying insects, such as , fly by flapping their wings at frequencies faster than their brains are able to process. To do so, they rely on self-oscillation: dynamic instability, leading to emergent oscillation, arising from muscle stretch-activation. Many questions concerning this vital natural instability remain open. Does flight motor self-oscillation necessarily lead to resonance-a state optimal in efficiency and/or performance? If so, what state? And is self-oscillation even guaranteed in a motor driven by stretch-activated muscle, or are there limiting conditions? In this work, we use data-driven models of wingbeat and muscle behaviour to answer these questions. Developing and leveraging novel analysis techniques, including symbolic computation, we establish a fundamental condition for motor self-oscillation common to a wide range of motor models. Remarkably, flight apparently defies this condition: a paradox of motor operation. We explore potential resolutions to this paradox, and, within its confines, establish that the flight motor is probably not resonant with respect to exoskeletal elasticity: instead, the muscular elasticity plays a dominant role. Contrary to common supposition, the stiffness of stretch-activated muscle is an obstacle to, rather than an enabler of, the operation of the flight motor.

摘要

微小的飞行昆虫,如 ,通过以超过其大脑处理能力的频率拍打翅膀来飞行。为了做到这一点,它们依赖于自激振:动态不稳定性导致出现从肌肉拉伸激活中产生的突发振荡。许多关于这种重要的自然不稳定性的问题仍然没有答案。飞行马达的自激振是否一定会导致共振——一种在效率和/或性能方面最优的状态?如果是这样,是什么状态?而且,在由拉伸激活的肌肉驱动的马达中,自激振是否甚至得到保证,或者是否存在限制条件?在这项工作中,我们使用拍动和肌肉行为的数据驱动模型来回答这些问题。通过开发和利用包括符号计算在内的新分析技术,我们为广泛的马达模型建立了一个马达自激振的基本条件。值得注意的是,飞行显然违背了这个条件:这是马达操作的一个悖论。我们探索了解决这个悖论的潜在方法,并在其范围内确定, 飞行马达可能不是相对于外骨骼弹性共振的:相反,肌肉弹性起着主导作用。与普遍的假设相反,拉伸激活肌肉的刚度是 飞行马达运行的障碍,而不是促进因素。

相似文献

1
The self-oscillation paradox in the flight motor of .
J R Soc Interface. 2023 Nov;20(208):20230421. doi: 10.1098/rsif.2023.0421. Epub 2023 Nov 15.
2
Solving the thoracic inverse problem in the fruit fly.
Bioinspir Biomim. 2023 May 5;18(4). doi: 10.1088/1748-3190/accc23.
3
Calcium signalling indicates bilateral power balancing in the Drosophila flight muscle during manoeuvring flight.
J R Soc Interface. 2013 Mar 13;10(82):20121050. doi: 10.1098/rsif.2012.1050. Print 2013 May 6.
4
A population of descending neurons that regulates the flight motor of Drosophila.
Curr Biol. 2022 Mar 14;32(5):1189-1196.e6. doi: 10.1016/j.cub.2022.01.008. Epub 2022 Jan 31.
7
Subtle frequency matching reveals resonant phenomenon in the flight of Odonata.
J R Soc Interface. 2024 Oct;21(219):20240401. doi: 10.1098/rsif.2024.0401. Epub 2024 Oct 23.
8
Effects of tropomyosin deficiency in flight muscle of Drosophila melanogaster.
Adv Exp Med Biol. 1993;332:165-71; discussion 172. doi: 10.1007/978-1-4615-2872-2_15.
9
Predicting fruit fly's sensing rate with insect flight simulations.
Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11246-51. doi: 10.1073/pnas.1314738111. Epub 2014 Jul 21.
10
Limit-cycle-based control of the myogenic wingbeat rhythm in the fruit fly Drosophila.
J R Soc Interface. 2013 Jan 2;10(80):20121013. doi: 10.1098/rsif.2012.1013. Print 2013 Mar 6.

引用本文的文献

1
Causal models of rate-independent damping in insect exoskeleta.
J Exp Biol. 2025 Jul 1;228(13). doi: 10.1242/jeb.249940. Epub 2025 Jul 7.
2
Insect Flight: State of the Field and Future Directions.
Integr Comp Biol. 2024 Jul 9;64(2):533-55. doi: 10.1093/icb/icae106.

本文引用的文献

1
A hull reconstruction-reprojection method for pose estimation of free-flying fruit flies.
J Exp Biol. 2023 Nov 1;226(21). doi: 10.1242/jeb.245853. Epub 2023 Nov 3.
2
Solving the thoracic inverse problem in the fruit fly.
Bioinspir Biomim. 2023 May 5;18(4). doi: 10.1088/1748-3190/accc23.
4
Model-Based Tracking of Fruit Flies in Free Flight.
Insects. 2022 Nov 3;13(11):1018. doi: 10.3390/insects13111018.
5
Modeling the musculoskeletal system of an insect thorax for flapping flight.
Bioinspir Biomim. 2022 Oct 11;17(6). doi: 10.1088/1748-3190/ac8e40.
6
The hawkmoth wingbeat is not at resonance.
Biol Lett. 2022 May;18(5):20220063. doi: 10.1098/rsbl.2022.0063. Epub 2022 May 25.
7
Distinct forms of resonant optimality within insect indirect flight motors.
J R Soc Interface. 2022 May;19(190):20220080. doi: 10.1098/rsif.2022.0080. Epub 2022 May 18.
8
Novel flight style and light wings boost flight performance of tiny beetles.
Nature. 2022 Feb;602(7895):96-100. doi: 10.1038/s41586-021-04303-7. Epub 2022 Jan 19.
9
Shortening deactivation: quantifying a critical component of cyclical muscle contraction.
Am J Physiol Cell Physiol. 2022 Apr 1;322(4):C653-C665. doi: 10.1152/ajpcell.00281.2021. Epub 2021 Dec 29.
10
Wings and halteres act as coupled dual oscillators in flies.
Elife. 2021 Nov 16;10:e53824. doi: 10.7554/eLife.53824.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验