Suppr超能文献

基于模型的果蝇自由飞行跟踪

Model-Based Tracking of Fruit Flies in Free Flight.

作者信息

Ben-Dov Omri, Beatus Tsevi

机构信息

The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.

School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.

出版信息

Insects. 2022 Nov 3;13(11):1018. doi: 10.3390/insects13111018.

Abstract

Insect flight is a complex interdisciplinary phenomenon. Understanding its multiple aspects, such as flight control, sensory integration, physiology and genetics, often requires the analysis of large amounts of free flight kinematic data. Yet, one of the main bottlenecks in this field is automatically and accurately extracting such data from multi-view videos. Here, we present a model-based method for the pose estimation of free-flying fruit flies from multi-view high-speed videos. To obtain a faithful representation of the fly with minimum free parameters, our method uses a 3D model that includes two new aspects of wing deformation: A non-fixed wing hinge and a twisting wing surface. The method is demonstrated for free and perturbed flight. Our method does not use prior assumptions on the kinematics apart from the continuity of the wing pitch angle. Hence, this method can be readily adjusted for other insect species.

摘要

昆虫飞行是一个复杂的跨学科现象。要理解其多个方面,如飞行控制、感官整合、生理学和遗传学,通常需要分析大量自由飞行的运动学数据。然而,该领域的主要瓶颈之一是如何从多视角视频中自动且准确地提取此类数据。在此,我们提出一种基于模型的方法,用于从多视角高速视频中估计自由飞行果蝇的姿态。为了用最少的自由参数获得果蝇的真实表示,我们的方法使用了一个三维模型,该模型包含机翼变形的两个新方面:一个非固定的机翼铰链和一个扭曲的机翼表面。该方法在自由飞行和受扰飞行中均得到了验证。除了机翼俯仰角的连续性之外,我们的方法不使用关于运动学的先验假设。因此,该方法可以很容易地针对其他昆虫物种进行调整。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f2/9692569/3cbaf0fd0799/insects-13-01018-g0A1.jpg

相似文献

1
Model-Based Tracking of Fruit Flies in Free Flight.
Insects. 2022 Nov 3;13(11):1018. doi: 10.3390/insects13111018.
2
A hull reconstruction-reprojection method for pose estimation of free-flying fruit flies.
J Exp Biol. 2023 Nov 1;226(21). doi: 10.1242/jeb.245853. Epub 2023 Nov 3.
4
The aerodynamics of hovering flight in Drosophila.
J Exp Biol. 2005 Jun;208(Pt 12):2303-18. doi: 10.1242/jeb.01612.
5
Independently controlled wing stroke patterns in the fruit fly Drosophila melanogaster.
PLoS One. 2015 Feb 24;10(2):e0116813. doi: 10.1371/journal.pone.0116813. eCollection 2015.
6
Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022712. doi: 10.1103/PhysRevE.92.022712. Epub 2015 Aug 14.
8
Speed control and force-vectoring of bluebottle flies in a magnetically levitated flight mill.
J Exp Biol. 2019 Feb 19;222(Pt 4):jeb187211. doi: 10.1242/jeb.187211.
9
Machine learning reveals the control mechanics of an insect wing hinge.
bioRxiv. 2024 Feb 2:2023.06.29.547116. doi: 10.1101/2023.06.29.547116.
10
Body saccades of Drosophila consist of stereotyped banked turns.
J Exp Biol. 2015 Mar;218(Pt 6):864-75. doi: 10.1242/jeb.114280. Epub 2015 Feb 5.

引用本文的文献

1
Causal models of rate-independent damping in insect exoskeleta.
J Exp Biol. 2025 Jul 1;228(13). doi: 10.1242/jeb.249940. Epub 2025 Jul 7.
3
Effect of Bionic Crab Shell Attitude Parameters on Lift and Drag in a Flow Field.
Biomimetics (Basel). 2024 Jan 29;9(2):81. doi: 10.3390/biomimetics9020081.
4
The self-oscillation paradox in the flight motor of .
J R Soc Interface. 2023 Nov;20(208):20230421. doi: 10.1098/rsif.2023.0421. Epub 2023 Nov 15.
5
A hull reconstruction-reprojection method for pose estimation of free-flying fruit flies.
J Exp Biol. 2023 Nov 1;226(21). doi: 10.1242/jeb.245853. Epub 2023 Nov 3.

本文引用的文献

1
Structure and tensile properties of the forewing costal vein of the honeybee Apis mellifera.
Soft Matter. 2020 Apr 29;16(16):4057-4064. doi: 10.1039/c9sm02364j.
2
Wing kinematic and aerodynamic compensations for unilateral wing damage in a small phorid fly.
Phys Rev E. 2020 Jan;101(1-1):012412. doi: 10.1103/PhysRevE.101.012412.
3
Motor output and control input in flapping flight: a compact model of the deforming wing kinematics of manoeuvring hoverflies.
J R Soc Interface. 2019 Dec;16(161):20190435. doi: 10.1098/rsif.2019.0435. Epub 2019 Dec 4.
4
Local deformation and stiffness distribution in fly wings.
Biol Open. 2019 Jan 14;8(1):bio038299. doi: 10.1242/bio.038299.
5
Escaping blood-fed malaria mosquitoes minimize tactile detection without compromising on take-off speed.
J Exp Biol. 2017 Oct 15;220(Pt 20):3751-3762. doi: 10.1242/jeb.163402.
6
Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight.
Nature. 2017 Apr 6;544(7648):92-95. doi: 10.1038/nature21727. Epub 2017 Mar 29.
7
The aerodynamics and control of free flight manoeuvres in Drosophila.
Philos Trans R Soc Lond B Biol Sci. 2016 Sep 26;371(1704). doi: 10.1098/rstb.2015.0388.
8
Kinematic compensation for wing loss in flying damselflies.
J Insect Physiol. 2016 Feb;85:1-9. doi: 10.1016/j.jinsphys.2015.11.009. Epub 2015 Nov 18.
9
Pitch perfect: how fruit flies control their body pitch angle.
J Exp Biol. 2015 Nov;218(Pt 21):3508-19. doi: 10.1242/jeb.122622. Epub 2015 Sep 18.
10
Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022712. doi: 10.1103/PhysRevE.92.022712. Epub 2015 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验