Suppr超能文献

解决果蝇中的胸腔逆向问题。

Solving the thoracic inverse problem in the fruit fly.

机构信息

The Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.

The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.

出版信息

Bioinspir Biomim. 2023 May 5;18(4). doi: 10.1088/1748-3190/accc23.

Abstract

In many insect species, the thoracic exoskeletal structure plays a crucial role in enabling flight. In the dipteran indirect flight mechanism, thoracic cuticle acts as a transmission link between the flight muscles and the wings, and is thought to act as an elastic modulator: improving flight motor efficiency thorough linear or nonlinear resonance. But peering closely into the drivetrain of tiny insects is experimentally difficult, and the nature of this elastic modulation is unclear. Here, we present a new inverse-problem methodology to surmount this difficulty. In a data synthesis process, we integrate literature-reported rigid-wing aerodynamic and musculoskeletal data into a planar oscillator model for the fruit fly, and use this integrated data to identify several surprising properties of the fly's thorax. We find that fruit flies likely have an energetic need for motor resonance: absolute power savings due to motor elasticity range from 0%-30% across literature-reported datasets, averaging 16%. However, in all cases, the intrinsic high effective stiffness of the active asynchronous flight muscles accounts for all elastic energy storage required by the wingbeat. Theflight motor should be considered as a system in which the wings are resonant with the elastic effects of the motor's asynchronous musculature, and not with the elastic effects of the thoracic exoskeleton. We discover also thatwingbeat kinematics show subtle adaptions that ensure that wingbeat load requirements match muscular forcing. Together, these newly-identified properties suggest a novel conceptual model of the fruit fly's flight motor: a structure that is resonant due to muscular elasticity, and is thereby intensely concerned with ensuring that the primary flight muscles are operating efficiently. Our inverse-problem methodology sheds new light on the complex behaviour of these tiny flight motors, and provides avenues for further studies in a range of other insect species.

摘要

在许多昆虫物种中,胸部外骨骼结构在飞行中起着至关重要的作用。在双翅目昆虫的间接飞行机制中,胸部表皮作为飞行肌肉和翅膀之间的传动链,被认为是一种弹性调制器:通过线性或非线性共振提高飞行马达的效率。但是,仔细观察微小昆虫的传动装置在实验上是困难的,而且这种弹性调制的性质尚不清楚。在这里,我们提出了一种新的反问题方法来克服这一困难。在数据综合过程中,我们将文献报道的刚性机翼空气动力学和肌肉骨骼数据整合到一个平面振荡器模型中,用于果蝇,并使用这个整合的数据来识别果蝇胸部的几个令人惊讶的特性。我们发现,果蝇可能有一种对马达共振的能量需求:由于马达弹性而导致的绝对功率节省范围在文献报道的数据集之间为 0%-30%,平均为 16%。然而,在所有情况下,主动异步飞行肌肉的固有高有效刚度都占了翅膀拍打所需的所有弹性能量存储。飞行马达应该被视为一个系统,其中翅膀与马达异步肌肉的弹性效应共振,而不是与胸部外骨骼的弹性效应共振。我们还发现,翅膀的运动学表现出微妙的适应,以确保翅膀的负载要求与肌肉的驱动力相匹配。这些新发现的特性共同提出了果蝇飞行马达的新概念模型:由于肌肉弹性而产生共振的结构,因此非常关注确保主要飞行肌肉高效运作。我们的反问题方法为这些微小飞行马达的复杂行为提供了新的视角,并为其他昆虫物种的进一步研究提供了途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验