Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309
Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO 80309.
J Neurosci. 2024 Jan 10;44(2):e0283232023. doi: 10.1523/JNEUROSCI.0283-23.2023.
Recently, multi-voxel pattern analysis has verified that information can be removed from working memory (WM) via three distinct operations , , or compared to information being ( Kim et al., 2020) While univariate analyses and classifier importance maps in Kim et al. (2020) identified brain regions that contribute to these operations, they did not elucidate whether these regions represent the operations similarly or uniquely. Using Leiden-community-detection on a sample of 55 humans (17 male), we identified four brain networks, each of which has a unique configuration of multi-voxel activity patterns by which it represents these WM operations. The visual network (VN) shows similar multi-voxel patterns for and , which are highly dissimilar from and , suggesting this network differentiates whether an item is held in WM or not. The somatomotor network (SMN) shows a distinct multi-voxel pattern for relative to the other operations, indicating the uniqueness of this operation. The default mode network (DMN) has distinct patterns for and , but these two operations are more similar to each other than to and , a pattern intermediate to that of the VN and SMN. The frontoparietal control network (FPCN) displays distinct multi-voxel patterns for each of the four operations, suggesting that this network likely plays an important role in implementing these WM operations. These results indicate that the operations involved in removing information from WM can be performed in parallel by distinct brain networks, each of which has a particular configuration by which they represent these operations.
最近,多体素模式分析已经验证了信息可以通过三种不同的操作从工作记忆(WM)中删除,或 ,与信息被 相比(Kim 等人,2020 年)。虽然 Kim 等人的单变量分析和分类器重要图确定了对这些操作有贡献的大脑区域,但它们没有阐明这些区域是否以类似或独特的方式代表这些操作。使用莱顿社区检测对 55 名人类样本(17 名男性)进行分析,我们确定了四个大脑网络,每个网络都有其独特的多体素活动模式配置,通过该配置来表示这些 WM 操作。视觉网络(VN)显示 和 的多体素模式相似,而 和 的多体素模式则非常不同,这表明该网络区分了项目是否在 WM 中。躯体运动网络(SMN)相对于其他操作显示出独特的多体素模式,表明该操作具有独特性。默认模式网络(DMN)对于 和 具有独特的多体素模式,但这两个操作彼此之间比 和 更相似,这是 VN 和 SMN 之间的一种模式。额顶控制网络(FPCN)对这四个操作都显示出独特的多体素模式,表明该网络可能在实施这些 WM 操作中发挥着重要作用。这些结果表明,从 WM 中删除信息的操作可以通过不同的大脑网络并行执行,每个网络都有特定的配置来表示这些操作。