Suppr超能文献

袋装方法提高了人脑功能分区的可重复性。

Bagging improves reproducibility of functional parcellation of the human brain.

机构信息

The Child Mind Institute, 101 East 56th Street, New York, NY, 10022, USA.

University of Texas at Austin, 110 Inner Campus Drive, Austin, TX 78705, USA.

出版信息

Neuroimage. 2020 Jul 1;214:116678. doi: 10.1016/j.neuroimage.2020.116678. Epub 2020 Feb 29.

Abstract

Increasing the reproducibility of neuroimaging measurement addresses a central impediment to the advancement of human neuroscience and its clinical applications. Recent efforts demonstrating variance in functional brain organization within and between individuals shows a need for improving reproducibility of functional parcellations without long scan times. We apply bootstrap aggregation, or bagging, to the problem of improving reproducibility in functional parcellation. We use two large datasets to demonstrate that compared to a standard clustering framework, bagging improves the reproducibility and test-retest reliability of both cortical and subcortical functional parcellations across a range of sites, scanners, samples, scan lengths, clustering algorithms, and clustering parameters (e.g., number of clusters, spatial constraints). With as little as 6 ​min of scan time, bagging creates more reproducible group and individual level parcellations than standard approaches with twice as much data. This suggests that regardless of the specific parcellation strategy employed, bagging may be a key method for improving functional parcellation and bringing functional neuroimaging-based measurement closer to clinical impact.

摘要

提高神经影像学测量的可重复性是推动人类神经科学及其临床应用的主要障碍。最近的研究表明,个体内部和个体之间的大脑功能组织存在差异,这表明需要在不增加扫描时间的情况下提高功能分区的可重复性。我们将自举聚合(bagging)应用于提高功能分区的可重复性问题。我们使用两个大型数据集证明,与标准聚类框架相比,bagging 提高了跨多个地点、扫描仪、样本、扫描长度、聚类算法和聚类参数(例如,聚类数量、空间限制)的皮质和皮质下功能分区的可重复性和测试-重测可靠性。仅用 6 分钟的扫描时间,bagging 就能创建比使用两倍数据的标准方法更具可重复性的组和个体水平分区。这表明,无论采用何种特定的分区策略,bagging 都可能是提高功能分区并使基于功能神经影像学的测量更接近临床影响的关键方法。

相似文献

1
Bagging improves reproducibility of functional parcellation of the human brain.袋装方法提高了人脑功能分区的可重复性。
Neuroimage. 2020 Jul 1;214:116678. doi: 10.1016/j.neuroimage.2020.116678. Epub 2020 Feb 29.
4
Functional parcellation using time courses of instantaneous connectivity.基于瞬时连通性时间序列的功能分区
Neuroimage. 2018 Apr 15;170:31-40. doi: 10.1016/j.neuroimage.2017.07.027. Epub 2017 Jul 14.
6
Evaluation of functional MRI-based human brain parcellation: a review.基于功能磁共振成像的人脑分割评估:综述。
J Neurophysiol. 2022 Jul 1;128(1):197-217. doi: 10.1152/jn.00411.2021. Epub 2022 Jun 8.

引用本文的文献

本文引用的文献

1
Standardizing human brain parcellations.标准化人类大脑分区。
Sci Data. 2021 Mar 8;8(1):78. doi: 10.1038/s41597-021-00849-3.
3
Harnessing reliability for neuroscience research.利用可靠性进行神经科学研究。
Nat Hum Behav. 2019 Aug;3(8):768-771. doi: 10.1038/s41562-019-0655-x.
7
On a two-truths phenomenon in spectral graph clustering.关于谱图聚类中的双真值现象。
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):5995-6000. doi: 10.1073/pnas.1814462116. Epub 2019 Mar 8.
9
Teaching Computational Reproducibility for Neuroimaging.神经影像学的计算可重复性教学
Front Neurosci. 2018 Oct 22;12:727. doi: 10.3389/fnins.2018.00727. eCollection 2018.
10
Imaging-based parcellations of the human brain.基于影像的人脑分区。
Nat Rev Neurosci. 2018 Nov;19(11):672-686. doi: 10.1038/s41583-018-0071-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验