The Child Mind Institute, 101 East 56th Street, New York, NY, 10022, USA.
University of Texas at Austin, 110 Inner Campus Drive, Austin, TX 78705, USA.
Neuroimage. 2020 Jul 1;214:116678. doi: 10.1016/j.neuroimage.2020.116678. Epub 2020 Feb 29.
Increasing the reproducibility of neuroimaging measurement addresses a central impediment to the advancement of human neuroscience and its clinical applications. Recent efforts demonstrating variance in functional brain organization within and between individuals shows a need for improving reproducibility of functional parcellations without long scan times. We apply bootstrap aggregation, or bagging, to the problem of improving reproducibility in functional parcellation. We use two large datasets to demonstrate that compared to a standard clustering framework, bagging improves the reproducibility and test-retest reliability of both cortical and subcortical functional parcellations across a range of sites, scanners, samples, scan lengths, clustering algorithms, and clustering parameters (e.g., number of clusters, spatial constraints). With as little as 6 min of scan time, bagging creates more reproducible group and individual level parcellations than standard approaches with twice as much data. This suggests that regardless of the specific parcellation strategy employed, bagging may be a key method for improving functional parcellation and bringing functional neuroimaging-based measurement closer to clinical impact.
提高神经影像学测量的可重复性是推动人类神经科学及其临床应用的主要障碍。最近的研究表明,个体内部和个体之间的大脑功能组织存在差异,这表明需要在不增加扫描时间的情况下提高功能分区的可重复性。我们将自举聚合(bagging)应用于提高功能分区的可重复性问题。我们使用两个大型数据集证明,与标准聚类框架相比,bagging 提高了跨多个地点、扫描仪、样本、扫描长度、聚类算法和聚类参数(例如,聚类数量、空间限制)的皮质和皮质下功能分区的可重复性和测试-重测可靠性。仅用 6 分钟的扫描时间,bagging 就能创建比使用两倍数据的标准方法更具可重复性的组和个体水平分区。这表明,无论采用何种特定的分区策略,bagging 都可能是提高功能分区并使基于功能神经影像学的测量更接近临床影响的关键方法。