Suppr超能文献

闭环人工胰腺系统中预防反弹性低血糖的安全模块的集成。

Integration of a Safety Module to Prevent Rebound Hypoglycemia in Closed-Loop Artificial Pancreas Systems.

机构信息

Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA.

出版信息

J Diabetes Sci Technol. 2024 Mar;18(2):318-323. doi: 10.1177/19322968231212205. Epub 2023 Nov 15.

Abstract

BACKGROUND

With automated insulin delivery (AID) systems becoming widely adopted in the management of type 1 diabetes, we have seen an increase in occurrences of rebound hypoglycemia or generated hypoglycemia induced by the controller's response to rapid glucose rises following rescue carbohydrates. Furthermore, as AID systems aim to enable complete automation of prandial control, algorithms are designed to react even more strongly to glycemic rises. This work introduces a rebound hypoglycemia prevention layer (HypoSafe) that can be easily integrated into any AID system.

METHODS

HypoSafe constrains the maximum permissible insulin delivery dose based on the minimum glucose reading from the previous hour and the current glucose level. To demonstrate its efficacy, we integrated HypoSafe into the latest University of Virginia (UVA) AID system and simulated two scenarios using the 100-adult cohort of the UVA/Padova T1D simulator: a nominal case including three unannounced meals, and another case where hypoglycemia was purposely induced by an overestimated manual bolus.

RESULTS

In both simulation scenarios, rebound hypoglycemia events were reduced with HypoSafe (nominal: from 39 to 0, hypo-induced: from 55 to 7) by attenuating the commanded basal (nominal: 0.27U vs. 0.04U, hypo-induced: 0.27U vs. 0.03U) and bolus (nominal: 1.02U vs. 0.05U, hypo-induced: 0.43U vs. 0.02U) within the 30-minute interval after treating a hypoglycemia event. No clinically significant changes resulted for time in the range of 70 to 180 mg/dL or above 180 mg/dL.

CONCLUSION

HypoSafe was shown to be effective in reducing rebound hypoglycemia events without affecting achieved time in range when combined with an advanced AID system.

摘要

背景

随着自动化胰岛素输送 (AID) 系统在 1 型糖尿病管理中的广泛应用,我们已经看到由于控制器对快速葡萄糖升高的反应而导致的低血糖反弹或生成性低血糖的发生率有所增加。此外,由于 AID 系统旨在实现餐时控制的完全自动化,因此算法被设计为对血糖升高做出更强烈的反应。这项工作引入了一种低血糖反弹预防层 (HypoSafe),可以轻松集成到任何 AID 系统中。

方法

HypoSafe 根据前一个小时的最低血糖读数和当前血糖水平来限制最大允许胰岛素输送剂量。为了证明其功效,我们将 HypoSafe 集成到最新的弗吉尼亚大学 (UVA) AID 系统中,并使用 UVA/帕多瓦 1 型糖尿病模拟器的 100 名成人队列模拟了两种情况:包括三个未宣布的用餐的名义案例,以及另一种通过高估手动推注故意引起低血糖的案例。

结果

在两种模拟情况下,通过减轻命令的基础率 (名义:从 0.27U 变为 0.04U,诱导性低血糖:从 0.27U 变为 0.03U) 和推注量 (名义:1.02U 变为 0.05U,诱导性低血糖:0.43U 变为 0.02U),HypoSafe 减少了低血糖反弹事件(名义情况:从 39 次减少到 0 次,诱导性低血糖:从 55 次减少到 7 次)。在 70 至 180mg/dL 范围内或高于 180mg/dL 范围内,时间没有出现任何临床显著变化。

结论

当与先进的 AID 系统结合使用时,HypoSafe 被证明可以有效减少低血糖反弹事件,而不会影响达到的时间范围。

相似文献

1
Integration of a Safety Module to Prevent Rebound Hypoglycemia in Closed-Loop Artificial Pancreas Systems.
J Diabetes Sci Technol. 2024 Mar;18(2):318-323. doi: 10.1177/19322968231212205. Epub 2023 Nov 15.
2
Internal model control based module for the elimination of meal and exercise announcements in hybrid artificial pancreas systems.
Comput Methods Programs Biomed. 2022 Nov;226:107061. doi: 10.1016/j.cmpb.2022.107061. Epub 2022 Aug 8.
3
Sensitivity of the Predictive Hypoglycemia Minimizer System to the Algorithm Aggressiveness Factor.
J Diabetes Sci Technol. 2015 Jun 30;10(1):104-10. doi: 10.1177/1932296815593292.
6
Clinical evaluation of an automated artificial pancreas using zone-model predictive control and health monitoring system.
Diabetes Technol Ther. 2014 Jun;16(6):348-57. doi: 10.1089/dia.2013.0231. Epub 2014 Jan 28.
9
An integrated multivariable artificial pancreas control system.
J Diabetes Sci Technol. 2014 May;8(3):498-507. doi: 10.1177/1932296814524862. Epub 2014 Apr 7.
10
Closed-Loop Control of Postprandial Glycemia Using an Insulin-on-Board Limitation Through Continuous Action on Glucose Target.
Diabetes Technol Ther. 2017 Jun;19(6):355-362. doi: 10.1089/dia.2016.0443. Epub 2017 May 1.

本文引用的文献

2
Rebound Hypoglycemia and Hyperglycemia in Type 1 Diabetes.
J Diabetes Sci Technol. 2024 Nov;18(6):1392-1398. doi: 10.1177/19322968231168379. Epub 2023 May 3.
4
Decision Support Systems and Closed-Loop.
Diabetes Technol Ther. 2022 Mar;24(S1):S58-S75. doi: 10.1089/dia.2022.2504.
5
Current Status and Emerging Options for Automated Insulin Delivery Systems.
Diabetes Technol Ther. 2022 May;24(5):362-371. doi: 10.1089/dia.2021.0514. Epub 2022 Mar 14.
6
Current Advances of Artificial Pancreas Systems: A Comprehensive Review of the Clinical Evidence.
Diabetes Metab J. 2021 Nov;45(6):813-839. doi: 10.4093/dmj.2021.0177. Epub 2021 Nov 22.
7
Advanced hybrid artificial pancreas system improves on unannounced meal response - In silico comparison to currently available system.
Comput Methods Programs Biomed. 2021 Nov;211:106401. doi: 10.1016/j.cmpb.2021.106401. Epub 2021 Sep 13.
9
Mitigation of Rebound Hyperglycemia With Real-Time Continuous Glucose Monitoring Data and Predictive Alerts.
J Diabetes Sci Technol. 2022 May;16(3):677-682. doi: 10.1177/1932296820982584. Epub 2021 Jan 5.
10
Hypoglycemia Prevention via Personalized Glucose-Insulin Models Identified in Free-Living Conditions.
J Diabetes Sci Technol. 2019 Nov;13(6):1008-1016. doi: 10.1177/1932296819880864. Epub 2019 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验